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1. IntrodutionThere has been muh reent work on extending Horn rule logi programs to inlude negative subgoals, givingwhat are alled general logi programs. This researh has proeeded in two general diretions, whih maybe summarized as the \program ompletion" approah and the \anonial model" approah.1.1. Program Completion SemantisThe original \program ompletion" approah, due to Clark [6℄, and disussed in detail by Shepherdson [37,38℄, Kunen [17℄, and Lloyd [20℄, has been to de�ne a new program, alled the ompleted program (sometimesalled the ompleted database). The ompleted program is treated simply as a �rst order formula (seeSetion 4). Then the negative literals that are logial onsequenes of the ompleted program, and onlythose, should be onsidered true. The same applies to positive literals, so the ompletion treats positiveand negative literals symmetrially. A proof method that supports this approah, alled SLDNF (SLDresolution plus the negation as failure rule) has been studied extensively. A losely related idea, the losedworld assumption, was introdued in the ontext of dedutive databases by Reiter [33℄. The generalizedlosed world assumption was proposed by Minker to handle disjuntive databases [25℄ without produing theinonsisteny typial of the losed world assumption; it is disussed in Example 3.1.SLDNF is applied to the original program. Clark showed the proedure to be sound in the sense that if agoal has a �nite SLDNF derivation, then it is a logial onsequene of the ompleted program. Ja�ar, Lassezand Lloyd showed that SLDNF was omplete (in the same sense) for Horn programs with non-ounderingqueries onsisting of a onjuntion of positive and/or negative literals [15℄. SLDNF was further investigatedfor general logi programs by Lloyd [20℄ (who oined the term SLDNF), Shepherdson [37, 38℄ (q.v. forfurther bibliography), and others. This approah is \logially" impeable, but does not address the issue ofhow the ompiler or the interpreter of the general logi program should treat atoms (goals) whose positiveand negative literals are neither logial onsequenes of the ompletion: the interpreter is not allowed toeither sueed or fail. Also, for some programs the ompleted program is inonsistent; for some others, theompleted program is onsistent but unintuitive. More importantly, on many natural examples it yields asurprisingly weak reasoning ability. We shall illustrate these laims with examples in Setion 7.Fitting [9℄ and Kunen [17℄ gave markedly di�erent, more uniform, semantis by interpreting the ompletedprogram in a 3-valued onstrutive logi, elegantly eliminating some diÆulties of the Clark programompletion approah. The third truth value, ?, onnotes unknown truth value and is \less informationthan" both true and false, whih are inomparable. Fitting showed that the ompletion of every programhas a (unique) minimum 3-valued model, and suggested that this model be taken for the semantis of theprogram. Kunen desribes a variant that is always reursively enumerable, and haraterizes the 3-valuedlogial onsequenes of the ompleted program. From our point of view, however, these semantis are alsotoo weak to apture the \ommon sense" notion of negation as failure, as disussed later in the motivatingexamples (Setion 7).A rather di�erent approah to negation is to interpret general rules as disjuntive lauses. In thisontext, the generalized losed world assumption onludes that p is false if there is no minimal positivedisjuntion p_q1_� � �_qk that is a (2-valued) logial onsequene of the lauses [25℄. Here k may be zero, sothat p is simply true. Disjuntive databases are quite di�erent from logi programs beause lauses have no\diretion". Thus a not b and b not a are treated alike, as a_b. Example 3.1 illustrates this distintion.2
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1.2. Canonial Model SemantisThe \anonial model," or \preferred model," approah has been to delare that a ertain model of theoriginal program is presumed to be the \intended" one, i.e., the one that the programmer and program usershave in mind. The justi�ation for hoosing the preferred model relies on an appeal to \ommon sense," andwhat people who write or read the program are likely to think it means. R. W. Topor and E. A. Sonenbergproposed the term \anonial model" to desribe a model that is seleted (often from many inomparableminimal models) to represent the \meaning" of a logi program or dedutive database. The advantage ofassigning a anonial model to a program is that one now has a standard for orretness of an interpreter1on all goals { it must onform to the anonial model, and sueed or fail appropriately. See [41℄ for adisussion of how the anonial model approah an bene�t appliation development.Another motivation for onentrating on anonial models is the view, expounded by Reiter [33℄, thatmany logi programs are appropriately thought of as having two omponents, an intensional database (IDB)that represents the reasoning omponent, and the extensional database (EDB) that represents a olletionof fats. Over the ourse of time, we may want to \apply" the same IDB to many quite di�erent EDBs.In this ontext the properties of the IDB merit areful study, and it makes sense to think of the IDB asimpliitly de�ning a transformation from an EDB to a set of derived fats; we would like the set of derivedfats to be the anonial model. For �nite ases the omputational omplexity of this transformation an bestudied; see Setion 8.One problem with the anonial model approah is that some programs may not have a anonial model,or if they do, it is unlear that the model mathes the users' expetations. A further diÆulty is that theanonial model may be omputationally infeasible. One line of researh has been to look for a de�nition ofthe anonial model that will apply to as broad a lass of programs as possible. Two lasses of programs thathave been studied are alled strati�ed and loally strati�ed . The strati�ed lass has been treated in [5, 1, 19,40℄, and elsewhere. The loally strati�ed lass, de�ned and studied by Przymusinski [31℄, is a superset ofthe lass of strati�ed programs. He de�ned perfet models, and showed that every loally strati�ed programhas a unique perfet model. These lasses are disussed further in Setion 6.For a while there was a feeling that programs that were not at least loally strati�ed probably didnot really make good sense, that they were inherently ambiguous, and thus faulty. Thus failure to have aperfet model was thought to indiate a aw in the program rather than in the de�nition of perfet models.Reent experiene has ast doubt on this attitude (see [11℄ for disussion), and spurred the searh for furtherimprovements in the de�nition of the \anonial model."Gelfond and Lifshitz propose an elegant de�nition of a stable model that is losely related to our work[11℄. Drawing on ideas in [10℄, they de�ne a \stable model" as one that is able to reprodue itself in a ertainsense; a program may have zero, one, or many stable models. In their sheme, when a program has a uniquestable model, that is is onsidered to be its anonial model. They argue that the unique stable model isthe natural one to assoiate with a logi program, and desribe some of its properties. Stable models aredisussed further in Setion 5.1.3. Well-Founded SemantisThis paper proposes a new de�nition of anonial model, whih we all the well-founded model. We showthat for loally strati�ed programs the perfet model oinides with the well-founded model; in addition,1By \interpreter," we mean any mehanism for exeuting the program, inluding a ompiler.3



www.manaraa.com

ertain programs that are not loally strati�ed have a well-founded model. Examples are given in Setion 7.But even when a program has no well-founded total model, it has a well-founded partial model; thuswe de�ne the well-founded semantis of any general logi program to be that literals in the well-foundedpartial model are true, their omplements are false, and other literals' truth values are not determined bythe program. Thus, a partial model an also be viewed as a model in 3-valued logi. This relationship isdisussed in Setion 4.While strati�ation is a syntati property of the IDB, for an unstrati�ed IDB, whether the programhas a total well-founded model depends in general on the EDB. One view of well-founded semantis is asan attempt to give a reasonable meaning to as muh of the program as possible in the unfavorable ases,when only a partial model exists, as an extension of the semantis for the favorable ases, whih have a totalmodel.The key idea in our formulation is the onept of an \unfounded set," whih is an adaptation of the\losed set" developed for disjuntive databases by Ross and Topor [35℄, and is essentially the same as the\seurable set" in [36℄. Unfounded sets are de�ned in Setion 3.Sine the preliminary version of this paper was presented at a onferene [43℄, several alternativeformulations of negation that appear to be equivalent to the well-founded semantis have been developed[3, 8, 32, 42℄. We believe that this indiates a robustness of the semantis, and provides evidene that itoinides well with \ommon sense" and intuition.2. General Logi Programs and Partial InterpretationsIn this setion we introdue our notation and basi de�nitions, and desribe the lass of general logi programsthat we shall be onsidering in this paper.De�nition 2.1. A general logi program is a �nite set of general rules , whih may have both positive andnegative subgoals. A general rule is written with its head , or onlusion on the left, and its subgoals (body),if any to the right of the symbol \ ," whih may be read \if." For example,p(X) a(X); not b(X):is a rule in whih p(X) is the head, a(X) is a positive subgoal, and b(X) is a negative subgoal. This rulemay be read as \p(X) if a(X) and not b(X)." A Horn rule is one with no negative subgoals, and a Hornlogi program is one with only Horn rules.Lloyd has reently adopted the word \normal" instead of \general" to desribe rules whose bodies onsistof a onjuntion of literals, and programs of suh rules [20℄. He reserves the word \general" to allow moreinvolved onstruts, suh as w(X) m(X;Y ); not (m(Y; Z); not w(Z)):where the �rst not applies to a onjuntion rather than an atom. Although we avoid suh onstruts forsimpliity of presentation, the well-founded semantis is easily generalized to suh syntax, so we ontinue touse the word \general." 4
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In keeping with Prolog's onvention, logial variables begin with a apital letter; onstants, funtions,and prediates begin with a lowerase letter. We use the same symbol, e.g., p, to refer to both a prediateand its relation. The arguments of a prediate are terms as ustomarily de�ned in logi:1. A variable or onstant is a term.2. A funtion symbol with terms as arguments is a term.Terms may also be viewed as data strutures of the program, with funtion symbols serving as reord names.The word ground is used as a synonym for \variable-free," in keeping with ommon pratie. Often aonstant is treated as a funtion symbol of arity zero.The Herbrand universe is the set of ground terms that use the funtion symbols and onstants thatappear in the program.2 The Herbrand base is the set of atomi formulas formed by prediate symbols inthe program whose arguments are in the Herbrand universe. If the program ontains a funtion symbolof positive arity, then the Herbrand universe and Herbrand base are ountably in�nite; otherwise they are�nite.We shall be onsidering atoms in the Herbrand base and ground rules whose variables have beeninstantiated to elements of the Herbrand universe, whih we all instantiated rules.De�nition 2.2. The Herbrand instantiation of a general logi program is the set of rules obtained bysubstituting terms in the Herbrand universe for variables in every possible way. An instantiated rule is onein the Herbrand instantiation. Whereas \uninstantiated" logi programs are assumed to be a �nite set ofrules, instantiated logi programs may well be in�nite.Certain programs exhibit a property alled unsafe negation, whih an ause anomalous behavior ifinterpreted in the Herbrand universe. Appendix A explains a way to \augment" suh programs byintroduing an extra rule that removes the anomalies by enlarging the Herbrand universe. Our developmentis independent of whether this augmentation is used or not.We shall be working extensively with sets of literals, for whih we now introdue some notation andde�nitions. If p is an atomi formula (atom), then p is its positive literal, :p is its negative literal, and thesetwo literals are said to be omplements of eah other.De�nition 2.3. For a set of literals S we denote the set formed by taking the omplement of eah literalin S by : � S.� We say literal q is inonsistent with S if q 2 : � S.� Sets of literals R and S are inonsistent if some literal in R is inonsistent with S, i.e., ifR \ : � S 6= ;� A set of literals is inonsistent if it is inonsistent with itself; otherwise it is onsistent .2If there is no onstant symbol in the program, then one is added arbitrarily.5
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De�nition 2.4. Given a program P, a partial interpretation I is a onsistent set of literals whose atomsare in the Herbrand base of P. A total interpretation is a partial interpretation that ontains every atom ofthe Herbrand base or its negation. We say a ground (variable-free) literal is true in I when it is in I andsay it is false in I when its omplement is in I . Similarly, we say a onjuntion of ground literals is true inI if all of the literals are true in I , and is false in I if any of its literals is false in I .De�nition 2.5. We say that an instantiated rule is satis�ed in a partial or total interpretation I if thehead is true in I or some subgoal is false in I ; it is falsi�ed if the head is false and all subgoals are true. Inaddition, if the head of the rule is false in I , but no subgoal is false in I then we say that the rule is weaklyfalsi�ed in I .De�nition 2.6. A total model of a program P is a total interpretation suh that every instantiated rule ofP is satis�ed. A partial model of P is a partial interpretation that an be extended to a total model of P.Although it is ustomary to omit the adjetive \total" when speaking of interpretations and models,beause we shall be dealing with both 2-valued and 3-valued logis, we shall inlude it for larity.Intuitively, a partial interpretation may ontain inomplete information: the positive literals in it areonsidered to be true atomi fats; the negative literals denote atoms onsidered to be false; and the truthvalues of the rest of the atomi fats are unknown, or unspei�ed, at least \at present." The natural orderingon partial interpretations is �. The idea is that I � I 0 if I 0 ontains all the information in I , both positiveand negative, plus possibly more.For us, a partial model is a partial interpretation I suh that some instantiated rules may not be satis�ed,but there is a (possibly empty) set of literals whose addition to the partial interpretation will satisfy all rules.Clearly, this is impossible if I falsi�es any instantiated rule. If I only weakly falsi�es some instantiated rule,then the addition of some negative literal to I may be neessary to satisfy that rule. Thus reognition ofpartial models ontaining weakly falsi�ed rules may be very diÆult. The following lemma shows that thesituation is muh simpler if I does not weakly falsify any instantiated rule.Lemma 2.1. Let P be a program and let I be a partial interpretation. If I weakly falsi�es no instantiatedrule from P, then I is a partial model of P.Proof. Let I 0 be the total interpretation formed by adding to I all atoms in the Herbrand base that areneither true nor false in I . Let r be an instantiated rule from P. If I satis�es r, then learly so does I 0. If Idoes not satisfy r, then the head of r annot be false in I , so it is true in I 0. Hene I 0 is a total model.Our notion of partial model is not the same as the natural notions of models used in 3-valued logis,suh as in the approahes of Fitting [9℄ and Kunen [17℄. Nevertheless, the well-founded partial model weonstrut will also be a model in Fitting's 3-valued sense. We shall disuss 3-valued models in Setion 4.6
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3. Unfounded Sets and Well-Founded Partial ModelsIn this setion we de�ne unfounded sets , whih are a variation of losed sets that were de�ned for disjuntivedatabases by Ross and Topor in [35℄. Unfounded sets provide the basis for negative onlusions in thewell-founded semantis.3.1. Unfounded SetsDe�nition 3.1. Let a program P, its assoiated Herbrand base H , and a partial interpretation I be given.We say A � H is an unfounded set (of P) with respet to I if eah atom p 2 A satis�es the followingondition: For eah instantiated rule R of P whose head is p, (at least) one of the following holds:1. Some (positive or negative) subgoal q of the body is false in I .2. Some positive subgoal of the body ours in A.A literal that makes (1) or (2) above true is alled a witness of unusability for rule R (with respet to I).Intuitively, we regard I as what we already know about the intended model of P (possibly partial). Rulessatisfying ondition (1) are not usable for further derivations sine their hypotheses are already known to befalse.Condition (2) is the unfoundedness ondition: of all the rules that still might be usable to derive somethingin the set A, eah requires an atom in A to be true. In other words, there is no one atom in A that an be�rst to be established as true by the rules of P (starting from \knowing" I). Consequently, if we hoose toinfer that some or all atoms in A are false, there is no way we ould later have to infer one to be true.As desribed more formally later, the well-founded semantis uses onditions (1) and (2) to draw negativeonlusions. Essentially, it simultaneously infers all atoms in A to be false. By ontrast, the semantis of [9℄uses only ondition (1) to draw negative onlusions. The losed sets of Ross and Topor [35℄ were de�nedonly with ondition (2).Example 3.1. Consider the program onsisting of the eight (instantiated) rules below.p(a) p(); not p(b):p(b) not p(a):p(e) not p(d):p().p(d) q(a); not q(b):p(d) q(b); not q():q(a) p(d):q(b) q(a):The atoms fp(d); q(a); q(b); q()g form an unfounded set with respet to ;. In partiular, fq()g is unfoundeddue to Condition (1); there is no rule usable to establish its truth. The set fp(d); q(a); q(b)g is unfoundeddue to Condition (2); we are given no way to establish p(d) without �rst establishing q(a) or establishing q(b)(whether we an establish :q(b) to support the �rst rule for p(d) is irrelevant for determining unfoundedness).7
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Also, there is no way to establish q(a) without �rst establishing p(d), and no way to establish q(b) without�rst establishing q(a). Clearly q() an never be proven, but we an also see that among p(d), q(a), and q(b),none an be the �rst to be proven.In ontrast, the pair fp(a); p(b)g does not form an unfounded set even though they depend on eah other,beause the only dependene is \through" negation. It is tempting to laim that the proof attempts for p(a)and p(b) will fail also, but suh a laim is faulty.The di�erene between sets fp(d); q(a); q(b)g and fp(a); p(b)g is this: Delaring any of p(d), q(a), or q(b)false does not reate a proof that any other element of the set is true. However, as soon as one of p(a) orp(b) is delared false, it beomes possible to prove the other is true. And if both are delared false at one,we have an inonsisteny.The treatment of p(a) and p(b) has something of the avor of the generalized losed world assumption(GCWA), in that (p(a) _ p(b)) is a (2-valued) logial onsequene of the program interpreted as inde�nitedisjuntive lauses; onsequently GCWA also delines to onsider them false. However, GCWA behaves quitedi�erently in general. For example, (p(e) _ p(d)) is also a logial onsequene, so GCWA does not onsiderp(d) false, whereas the well-founded semantis does. Similar remarks apply to q(a) and q(b). (However, q()is onsidered false by GCWA; it is in the positive disjuntion (q() _ p(d) _ p(e)), but this disjuntion isnot minimal .) As a further di�erene, after p(d) is lassi�ed as false in the well-founded semantis, p(e) willbeome derivable. It is a property of GCWA that the atoms onsidered false annot be used to support anyfurther derivations.Simultaneously negating all the atoms in an unfounded set generalizes negation by failure in Horn lauseprograms; if H is the Herbrand base and I is the set of atoms that represents the minimum Herbrand modelof a Horn lause program [39℄, then H � I , the set of atoms not in I , is unfounded with respet to I .We now formalize the intuition of the preeding disussion. It is immediate that the union of arbitraryunfounded sets is an unfounded set. This leads naturally to:De�nition 3.2. The greatest unfounded set (of P) with respet to I , denoted UP (I), is the union of all setsthat are unfounded with respet to I .We now make some easy, but instrutive, observations about unfounded sets. To a ertain extent, there isa exibility between having :p 2 I and having p in an unfounded set. The following lemma shows that, givenan interpretation R, if we dedue that ertain fats S are in an unfounded set A and add their omplementsto R, other unfounded atoms remain unfounded.Lemma 3.1. Let R be a set of literals, and let A be an unfounded set of P with repet to R. For any subsetS � A, A� S is unfounded with respet to R [ : � S.Proof. Any witness of unusability that was an atom in S is now a negative literal in : �S, and hene is stilla witness.The next lemma demonstrates a onnetion between (lak of) weak falsi�ation (De�nition 2.5) andunfounded sets. Reall from Lemma 2.1 that I in the next lemma is a partial model.8
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Lemma 3.2. Let I be a partial interpretation onsisting of positive literals Q and negative literals : �S. IfI does not weakly falsify any instantiated rule of program P, then S is an unfounded set with respet to Q.Proof. Let p 2 S and let R be any instantiated rule whose head is p. Beause R is not weakly falsi�ed,some subgoal of R is false in I . If this subgoal is positive, it is also in S, so ondition (2) of De�nition 3.1 issatis�ed. If this subgoal is negative, its positive version is in Q so ondition (1) is satis�ed.3.2. Well-Founded Partial ModelsWe now onsider a (possibly trans�nite) sequene that results from ombining two set transformations. Thelimit of this sequene de�nes the well-founded semantis. In what follows the word transformation alwaysmeans a transformation between sets of literals, where their atoms are in the Herbrand base of a givenprogram P. We reall that a transformation T is alled monotoni if T (I) � T (J), whenever I � J .De�nition 3.3. Transformations TP , UP , and WP are de�ned as follows:� p 2 TP (I) if and only if there is some instantiated rule R of P suh that R has head p, and eahsubgoal literal in the body of R is true in I .� UP (I) is the greatest unfounded set of P with respet to I , as in De�nition 3.2.� WP (I) = TP (I) [ : �UP (I).Lemma 3.3. TP , UP , and WP , are monotoni transformations.Proof. Immediate from de�nitions.We wish to emphasize that, unlike some other methods, our TP treats positive and negative subgoalssymmetrially. In deiding whether a negative subgoal not p is true, some methods look for the absene ofp from I . For us the presene or absene of p is immaterial for the truth of the subgoal not p; we requirethe presene of :p.De�nition 3.4. Let � range over all ountable ordinals. The sets I� and I1, whose elements are literalsin the Herbrand base of a program P, are de�ned reursively by:1. For limit ordinal �, I� = [�<� I�Note that 0 is a limit ordinal, and I0 = ;.2. For suessor ordinal � =  + 1, I+1 = WP (I)3. Finally, de�ne I1 = [� I�9
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Following Moshovakis [29℄, for any literal p in I1, we de�ne the stage of p to be the least ordinal � suhthat p 2 I�. We observe that the stage is always a suessor ordinal for literals in I1.Lemma 3.4. I� as de�ned in De�nition 3.4 is a monotoni sequene of partial interpretations (i.e., isonsistent).Proof. The proof is by indution on �. The basis, � = 0, is immediate. For � > 0, assume the lemma istrue for � < �.For monotoniity, �rst let � =  + 1 be a suessor ordinal. if literal q 2 I , there is a smallest � < suh that q 2WP (I�) (even if  is a limit ordinal). But WP is monotoni, so by the indutive hypothesisq 2WP (I). Monotoniity for limit � follows from the de�nition of I�.To show onsisteny for suessor ordinal � =  + 1, note that every literal in I� �rst appears in someI�+1, i.e., at a suessor ordinal \stage". Let A be any set of positive ground literals that has a nonemptyintersetion with (the positive literals of) I+1. It is suÆient to show that A is not unfounded w.r.t. I ,for then the greatest unfounded set of I is also disjoint from the positive part of I+1. Choose the earliestI�+1 that intersets A and selet an atom p in that intersetion. Then p was derived by some rule R all ofwhose subgoals are in I� . By the indutive hypothesis, those subgoals are also in I , and I is onsistent,so none of the subgoals is false in I . By the hoie of �, they are not in A. Thus rule R has no witness ofunusability, whih demonstrates that A is not an unfounded set w.r.t. I .For limit ordinal � > 0, to show that I� is a partial interpretation, assume the lemma is true for � < �.If both q and :q are in I�, there is some suessor ordinal  + 1 < � suh that the same is true. Thisontradits the indutive hypothesis.It follows by lassial results of Tarski that I1 is the least �xed point of the operator WP . The Herbrandbase is ountable, so for some ountable ordinal �, I1 = I�.De�nition 3.5. The losure ordinal for the sequene I� is the least ordinal � suh that I1 = I� (f. [29℄).Examples an be onstruted where the losure ordinal is above !, but the authors believe suh examplesto be very rare in pratial logi programming. In the ase of a funtion-free program with a �nite EDB,whih is ommon in dedutive databases, the limit is reahed after a �nite ordinal. The \data omplexity"of this ase is disussed in Setion 8.De�nition 3.6. The well-founded semantis of a program P is the \meaning" represented by the least�xed point of WP , or the limit I1 desribed above; every positive literal denotes that its atom is true,every negative literal denotes that its atom is false, and missing atoms have no truth value assigned by thesemantis.
10
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Lemma 3.5. Let I� be as de�ned in De�nition 3.4. Then I� does not weakly falsify (De�nition 2.5) anyinstantiated rule of P.Proof. Let R be any instantiated rule with head p suh that :p 2 I�. We need to show that the body ofR is false in I�. By de�nition, p 2 UP (I�) for some � < �. By Lemma 3.4, I� � I�+1 � I�. Either thebody of R is false in I� , or some subgoal q of the body of R is in the greatest unfounded set w.r.t. I� . Inthe latter ase, :q 2 I�+1, so the body of R is false in I�+1. In either ase, it follows that the body of R isfalse in I�.Theorem 3.6. For eah ountable ordinal �, I� in the sequene desribed in De�nition 3.4 is a partialmodel of P.Proof. Immediate by Lemmas 2.1 and 3.5.De�nition 3.7. Suppose that for eah p in the Herbrand Base I1 ontains either p or :p, i.e. I1 is a totalinterpretation. Then by the above theorem, I1 is a total model, and we all this the well-founded model ;otherwise we all I1 the well-founded partial model .Theorem 3.7. Every Horn program has a well-founded model I1, whih is the minimum model in thesense of Van Emden and Kowalski [39℄, i.e., its positive literals are ontained in every Herbrand model.Proof. Let H be the Herbrand base and let Q be the set of positive literals of I1. Q is a �xed point of TP[39℄. In view of Theorem 3.6 it is suÆient to show that H �Q � UP (I1). Let p be any positive literal inH � Q. Eah rule for p must have a positive subgoal that is also in H � Q, whih subgoal is a witness ofunusability for this rule. Thus H �Q is unfounded w.r.t. ;, and a fortiori w.r.t. I1.4. Three-Valued Models of the Program CompletionThe relationship of the well-founded semantis to other methods based on program ompletion and 3-valuedlogis is disussed in this setion. Clark introdued the ompleted program as a way of formalizing thenotion that fats not inferable from the rules in the program were to be regarded as false [6℄. Fitting studiedmodels of the ompleted program in a 3-valued logi, and showed that all suh models were �xed points ofa ertain operator [9℄. We show that the well-founded partial model is also a model in this logi, but oftennot the least model.The idea behind the Clark ompletion of a program is to ollet all rules having the same head prediateinto a single rule whose body is a disjuntion of onjuntions, then replae the \if" symbol, \ ," by \$."This states in e�et that the prediate is ompletely de�ned by the given rules. The formal details, inludinghandling of variables and introdution of axioms for equality, are desribed in several plaes [6, 2, 20, 9, 17℄.Example 4.1. Reall the last four rules of Example 3.1, whose atoms formed an unfounded set:p(d) q(a); not q(b):p(d) q(b); not q():q(a) p(d):q(b) q(a):11
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The Clark ompletion ombines the rules for p into one rule, ombines the rules for q into another rule, thenreplaes \ " by \$". After some simpli�ations to eliminate bound variables, there results:p(d)$ (q(a) ^ :q(b)) _ (q(b) ^ :q()))8X [q(X)$ ((X = a) ^ p(d)) _ ((X = b) ^ q(a))℄The equality freeness axioms (often alled the Clark Equality Theory or CET) are also part of the ompletedprogram. Roughly, they require a one to one interpretation of the terms, so that q() annot be made trueby setting  = a or  = b.The original \logial onsequene" approah essentially delares that only onlusions that are logialonsequenes (in the lassial, 2-valued sense) of the ompleted program should be inferred [6, 15, 20, 37℄.When the ompleted program is onsistent, this approah impliitly de�nes a 3-valued interpretation: assignvalue true to instantiated atoms that are true in all (2-valued, not neessarily Herbrand) models of theompleted program, false to instantiated atoms that are false in all models, and ? (unknown) to all otherinstantiated atoms. However, beause the truth of eah literal is based on traditional 2-valued logi, we allthis the 2-valued program ompletion (2PC) interpretation.The 3-valued interpretations were made expliit by Fitting [9℄ and Kunen [17℄, who also used 3-valuedlogi to evaluate formulas. Whereas (p _ :p) must be true in 2-valued logi, in 3-valued logi it may alsobe ?. In addition, the \$" produed by the program ompletion proess was interpreted as  Lukasiewiz'soperator of \having the same truth value," so that?$ ? evaluates to true. Fitting's and Kunen's treatmentseliminated some anomalies in the 2PC interpretation.Example 4.2. Consider the single rule programp not p; not q:The Clark ompletion is p$ (:p ^ :q)q $ falsewhih has no 2-valued model. (The seond rule derives from false representing the empty disjuntion of q'srule bodies.) However, if we add the \meaningless" rule, p p, the ompleted program hanges to:p$ (:p ^ :q) _ pq $ :truewhih has the unique 2-valued model, fp; :qg. If, instead, we add the \meaningless" rule, q  q, theompleted program hanges to: p$ (:p ^ :q)q $ qwhih has a di�erent 2-valued model, f:p; qg. However, all three versions have 3-valued models in whihp = ?. 12
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Finally, as suggested by a referee, if we add several rules, giving:p not p; not q:q  r:q  s:r  r:s s:the ompleted program beomes: p$ (:p ^ :q)q $ (r _ s)r $ rs$ sNow there are three 2-valued models, whih vary on whether r or s or both are true. Their ommon part(intersetion) is the same 2PC interpretation as above, f:p; qg. However, here the 2PC interpretation is nota 3-valued model .One prinipal result in [9℄ is that the ompletion of every program has a (unique) minimum 3-valuedHerbrand model. Fitting suggests that this model be taken for the semantis of the program, and hereafterwe all it the Fitting model . Thus the Fitting model is sometimes \less de�ned" than the 2PC interpretation,as in the previous example. However, Example A.1 in Appendix A shows that the 2PC interpretation anbe \less de�ned" than the Fitting model.To any partial interpretation I (in 2-valued logi) there orresponds the obvious 3-valued interpretationin whih atoms missing from I are assigned the truth value ?. In this setting, our partial interpretationsare the same as Fitting's basi sets [9℄. In 3-valued logi literals and onjuntions are true and false in I asspei�ed in De�nition 2.4; in addition, the truth value ? may be assigned:De�nition 4.1. Literal q is alled unde�ned in I , denoted by \?", if neither q nor its omplement is in I .A onjuntion of literals evaluates to unde�ned in I if no literal in the onjuntion is false in I and at leastone is unde�ned in I .De�nition 4.2. NP is de�ned as the transformation that, for I a 3-valued interpretation, gives as NP (I)the set of atoms p suh that for every rule in the Herbrand instantiation of P with p as its head, the bodyis false in I , i.e., some subgoal of the rule is false in I . Note that NP is the portion of UP produed byondition (1) of De�nition 3.1.Fitting also onstruts 3-valued models with a �xed point operator [9℄. For positive inferenes, TP isas in De�nition 3.3. For negative inferenes he uses (in e�et) the transformation NP (I) de�ned above. Aseond main theorem of that approah is: 13
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Theorem 4.1. (Fitting) A 3-valued interpretation I is a 3-valued model of the ompleted program if andonly if I = TP (I) [ : �NP (I).This immediately yields a �xed point onstrution for 3-valued models, and the Fitting model is the least�xed point. We now show that the well-founded partial model is also a 3-valued model in Fitting's sense.Theorem 4.2. Let I1 be as de�ned in De�nition 3.4. Then I1 = TP (I1) [ : �NP (I1). Hene, I1 is a3-valued model of the ompletion of the logi program.Proof. Sine I1 = TP (I1) [ : �UP (I1), it follows that1. TP (I1) [ : �NP (I1) � I1, and2. every positive literal in I1 is in TP (I1).It remains to show that every negative literal :p that is in I1 is also in : �NP (I1). But by Lemma 3.5eah instantiated rule with head p has its body false in I1, so p 2 NP (I1).Corollary 4.3. The Fitting model is a subset of I1.I1 an indeed di�er from the smallest 3-valued model of the ompletion of the program, and need noteven be a subset of all 2-valued models, as shown by the one-rule program, p p, in whih p is false in I1and is unde�ned in the Fitting model.Kunen desribes a variant that di�ers from Fitting's in two important ways: (1) the iteration is alwaysstopped at !, and (2) the Herbrand universe is de�ned with respet to a language with an in�nite set offuntion symbols, whih properly inludes those that our in the program [17℄. The resulting 3-valuedinterpretation is reursively enumerable, but may not be a 3-valued model. Kunen's main theorem is thatthis interpretation haraterizes the 3-valued logial onsequenes of the ompleted program.5. Stable ModelsGelfond introdued an approah to negation through stable models [10℄, and motivated it by appealing toautoepistemi logi, as developed by Moore [26℄. The theory has been further developed by Gelfond andLifshitz [11℄, and also by Marek and Truszzynski [23, 24℄.In this setion we follow the de�nition of [11℄, whih de�nes stability without referene to autoepistemilogi. We show that if a program has a total well-founded model, that model is the unique stable model. Wealso disuss two programs whih do not have total well-founded models but do have unique stable models.Whether inferring (or not inferring) the truth of these extra literals is \a bug or a feature" of either approahwe leave for the reader's judgement.Gelfond and Lifshitz [11℄ de�ne a stable model to be one that reprodues itself in a ertain three stagetransformation, whih we all the stability transformation. If a program has only one stable model, that isalled its unique stable model. Stable models refer to 2-valued logi. When speaking of total, or 2-valued,interpretations, it is more ommon to represent models as sets of ground atoms, with the understandingthat missing atoms represent the negative literals. In this ontext a \minimal model" is one that has aminimal set of positive literals, and a \monotoni transformation" on total interpretations is one that ismonotoni in terms of the positive literals alone. However, for onsisteny with the rest of the paper, weshall represent models as sets of literals, and use the following notation for sets of positive and negativeatoms in interpretations. 14
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De�nition 5.1. For any partial interpretation I , let Pos(I) be the set of positive literals in I , and letNeg(I) be the set of atoms that represent negative literals in I . Thus I = Pos(I) [ : �Neg(I).De�nition 5.2. Given a general logi program P, and its Herbrand instantiation, PH , we de�ne S, thestability transformation from total interpretations into total interpretations. Given a total interpretation I ,its transformation S(I) is de�ned in the following three stages:1. De�ne P0 = T1(PH ; I)where T1 is the following transformation: For eah rule instantiation, if it ontains a negative subgoalthat is inonsistent with I , then the rule instantiation is disarded. The output of the transformationis the set of rule instantiations that remain.2. De�ne P00 = T2(P0)where T2 is the transformation by whih all negative subgoals are dropped from rules of P0, leaving aHorn program. We all P00 the redution of P with respet to I .3. Sine P00 is a Horn program, we an form its minimum (2-valued) model as in the standard Van Emdenand Kowalski semantis [39℄. In this ontext, \minimum," means that the set of positive literals isminimized, and hene the set of negative literals is maximized.We de�ne S(I) to be this minimum model of P00.Example 5.1. Let PH be p not p:a not b:b not a:and let M = fa; :b; pg, whih is a minimal model of PH . Then P0 onsists only ofa not b:beause the other rules ontain negative subgoals whose atoms are in Pos(M). Now P00 is the Horn rulea:Thus S(M) = fa; :b; :pg, whih, inidentally, is not a model of PH .The name \stability transformation" is justi�ed in a sense by the following lemma, whih shows that S isa \shrinking" transformation (on positive literals) when applied to total models. However, as shown above,it is possible that M is a model and S(M) is not a model; it may \shrink" too muh.15
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Lemma 5.1. Let M be a total model of general logi program P. Then Pos(S(M)) � Pos(M).Proof. Using the terminology of De�nition 5.2, M is a total model of P0 and also of P00, by theironstrution. But S(M) is the minimum total model of P00.The models that are �xed points of S are of speial interest.De�nition 5.3. A total model M of general logi program P is stable if it is a �xed point of S; that is, ifM = S(M). If program P has exatly one stable model, that model is alled the unique stable model of P.It is immediate that a stable model is minimal (in terms of the set of positive literals), but not everyminimal model is stable, as shown in Example 5.1 above and in Example 5.3 below.Example 5.2. Let P1 be a not b:b not a:Both fa; :bg and fb; :ag are stable models, so P1 has no unique stable model. Its Fitting model, 2PCinterpretation, and well-founded partial model are ;.Example 5.3. For another example, let P2 be p not p:The only model of P2 is M = fpg. The one rule in the program drops out of the redution, makingS(M) = f:pg the minimum model of the redution of P2. Hene P2 has no stable model.As disussed in Example 4.2, the ompleted program is p$ :p. Its 2PC interpretation in 2-valued logiis inonsistent. Its Fitting model and well-founded partial model are ;.There is a lose relationship between stable models and well-founded (partial or total) models. As de�ned,a unique stable model is demonstrated only through the expliit enumeration of all minimal models followedby testing eah for stability. We shall show that well-founded total models are unique stable models. Thiso�ers a method to generate the unique stable model diretly3 in suh programs. The next lemmas illustratethe lose relationship by showing that, for total models, the negative part of the stability transformation Sagrees with the greatest unfounded set UP , while the positive part of S is ontained in TP .Lemma 5.2. Let M be a total model of a program P. Then Neg(S(M)) = UP (M).Proof. Form Horn program P00 as in De�nition 5.2, and let M0 = S(M) be its minimum total model.First we show that UP (M) � Neg(M0). Sine M0 is total, it suÆes to show that, for any positiveliteral p, if p 2 Pos(M0) then p 62 UP (M). We prove this by indution on the stages of the (Van Emden3if you onsider possibly trans�nite iteration diret! 16



www.manaraa.com

and Kowalski type) onstrution of M0. It is true vauously for stage 0, whih is empty. For stage k > 0,suppose positive literal p is derived in stage k of the onstrution of M0. Then there is a rulep a1; : : : ; akin P00 suh that the ai's have been derived in stages less than k. This rule orresponds to some rule in P0,p a1; : : : ; ak; not b1; : : : ; not bnsuh that eah bj 2 Neg(M), whih in turn orresponds to a rule in PH . By Lemma 5.1, all the ai's are alsoin Pos(M). Sine M is onsistent, none of the subgoals, the ai's or the not bj 's, are false in M. Finally,by the indutive hypothesis, none of the ai's are in UP (M). Hene, by virtue of this PH rule, p 62 UP (M).We prove that Neg(M0) � UP (M). It suÆes to show that Neg(M0) is an unfounded set of PH w.r.t.M. Suppose some p 2 Neg(M0) fails to satisfy some ondition of unfoundedness, as de�ned in De�nition 3.1.Then there is a rule p a1; : : : ; ak; not b1; : : : ; not bnin PH suh that the following fats hold:1. no ai is false in M2. no bj is true in M3. no ai is true in Neg(M0)the third fat being the negation of the \unfoundedness" ondition. Sine M is total, it follows from theseond fat that eah bj is in Neg(M). Henep a1; : : : ; akis a rule in P00. SineM0 is total, it follows from the third fat that eah ai 2 Pos(M0). Hene p 2 Pos(M0),a ontradition.Lemma 5.3. Let M be a total model of P. Then Pos(S(M)) � TP (M).Proof. Form program P0 and Horn program P00 as in De�nition 5.2, and let M0 = S(M) be the minimumtotal model of P00. By Lemma 5.1, Pos(M0) � Pos(M), so we havePos(M0) = Pos(TP 00 (M0)) � Pos(TP 00(M))by monotoniity of TP 00 (on positive literals). Finally,Pos(TP 00 (M)) = Pos(TP 0(M)) = Pos(TP (M))by onstrution.The preeding lemmas lead to the next theorem that being a �xed point of S is equivalent to being a�xed point of WP for total models. In fat, this equivalene extends to all total interpretations beausebeing a �xed point of either transformation ensures that the interpretation is a model. As shown in a laterexample, it is possible that a �xed point of S is not the least �xed point of WP , but if it is the least �xedpoint, that stable model is obviously unique. 17
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Theorem 5.4. Let M be a total model of P. Then M is stable if and only if it is a �xed point of WP .Proof. Form Horn program P00 as in De�nition 5.2, and let M0 = S(M) be its minimum total model.(() We suppose M is a �xed point of WP and prove it is stable. Sine M is a �xed point of WP , wehave Neg(M) = UP (M). But, by Lemma 5.2, Neg(M0) = UP (M), also. Hene M =M0.()) We suppose M is stable and prove it is a �xed point of WP . Sine M = M0, by Lemma 5.3,Pos(M) = Pos(M0) � TP (M). But TP (M) � Pos(M), sineM is a model of P. So TP (M) = Pos(M).Again, sine M =M0, by Lemma 5.2, UP (M) = Neg(M).Corollary 5.5. Let I be a total interpretation of P. Then I is a �xed point of S if and only if it is a �xedpoint of WP .Proof. It is routine to show that if I is a �xed point of either S or WP , then every instantiated rule issatis�ed. Hene I is a model, and Theorem 5.4 applies.Corollary 5.6. If P has a well-founded total model, then that model is the unique stable model.Corollary 5.7. The well-founded partial model of P is a subset of every stable model of P.Proof. Every stable model is a �xed point of WP , and the well-founded partial model is the least �xedpoint.In Examples 5.4 and 5.5 below we show that the onverse of Corollary 5.6 is not neessarily true.We agree with Gelfond and Lifshitz that a model that is intended to be assoiated with a programshould be able to \derive itself." However, as shown in later examples, the sense of \deriving itself" di�ersslightly between well-founded semantis and stable model semantis.5.1. Comparison of Stable and Well-Founded ApproahesWe now ompare the well-founded semantis with the stable model semantis. On many programs they areidential, and at �rst it appeared that the only di�erene was that the well-founded semantis de�ned a partialmodel when there were multiple stable models. However, it turns out that there also are programs with aunique stable model and only a partial well-founded model. In other words, the onverse of Corollary 5.6 isnot neessarily true. These examples and others show that awkward situations arise for well-founded modelsand unique stable models when the fatoring operation of resolution theorem proving (or the law of theexluded middle, in natural dedution) plays a part. Reall that \fatoring" of a ground lause is simply theoperation of merging two idential literals.Fatoring enters the piture with a rule of the formp not p; : : :beause, as a disjuntive lause, it an be rewritten asp _ p : : :and then the two p literals an be merged. Another manifestation of this phenomenon ours with a pair ofrules, p a; : : :p not a; : : :18
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Again, as disjuntive lauses, they an be resolved on a, givingp _ p : : :and then the two p literals an be ombined by fatoring. Two-valued logial onsequenes that an bederived only by using fatoring annot be derived in either the well-founded semantis or the 3-valuedprogram ompletion approahes (f. Examples 4.2 and 5.3).Example 5.4. Consider the program P3 given by the four rules:a not b:b not a:p not p:p not b:Let us �rst onsider P03, onsisting of just the �rst three rules above (f. Example 5.1). The �rst two rulesomprise P1 of Example 5.2, whih had two stable models; the third is P2 of Example 5.3, whih had nostable model. Thus the �rst three rules alone have two minimal models, neither of whih is stable:fa; :b; pg and f:a; b; pgThe program ompletion of P03 is inonsistent. (Just turn eah \ " into \$".) Not too surprisingly, thewell-founded partial model and the Fitting model are empty.Adding the fourth rule would appear to be meaningless at �rst glane beause p is already a (2-valued) logial onsequene of the �rst three rules, and there is no apparent basis to onlude :b, anyway.Nevertheless, the fourth rule has a strange e�et: it stabilizes preisely one of the two models, and soprodues a unique stable model for the full program! Moreover, the program ompletion of the full P3,a$ :b:p$ (:p _ :b):now has a 2-valued model. Whereas its well-founded partial model and Fitting model remain empty, theunique stable model of P3 is M = fa; :b; pgTo verify this, we note that the redution of P3 with respet to M isa:p:This model is also the 2PC model.Example 5.5. Consider the program P4 given by the four rules:a not b:b not a: a; b:a not :19
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Again the Fitting model and well-founded partial model are ;, while the unique stable model exists andagrees with the 2PC model: M = fa; :b; :gTo verify this, we note that the redution of P4 with respet to M is simplya: a; b:a:
6. Strati�ed and Loally Strati�ed ProgramsA program is strati�ed if all of its prediates an be assigned a rank suh that� no prediate depends positively on one of greater rank, and� no prediate depends negatively on one of equal or greater rankin any rule [5, 1, 19, 40℄. In the ontext of an IDB and EDB, the EDB, being a set of simple fats, hasrank 0. IDB prediates whose de�ning rules involve no negation also have rank 0. IDB prediates whoseonly negative dependenies are on rank 0 prediates have rank 1, and so on. Strati�ability is easy to heksyntatially; in fat it an be heked by examination of the IDB alone.The strati�ed semantis of suh a program is de�ned by �rst drawing all rank 0 inferenes in the normalway for Horn programs, and onluding :p for all rank 0 atoms p that have not been inferred. Note thatthis is not the usual \negation by failure" beause some of these atoms may not have failed �nitely ; f.Example 7.2. The de�nition of strati�ed semantis is ompleted indutively: After all atoms of ranks lessthan k have been lassi�ed as positive or negative, use these literals to derive positive rank k atoms; onlude:q for all rank k atoms q that have not been inferred. The result is alled the strati�ed model .It is immediate from Theorem 3.7 that the strati�ed semantis agrees with the well-founded semantisfor rank 0, and it is easy to see that the agreement extends to all ranks. We shall prove a somewhat strongerresult below. From another point of view, Van Gelder has shown that strati�ed programs that satisfy ertainother onditions have a model based on \tight derivations" that oinides with the strati�ed model [40℄.Przymusinski arried the above idea to a �ner grain by de�ning a program to be loally strati�ed if eahatom in its Herbrand base an be assigned a ountable ordinal rank suh that no atom depends on an atomof greater rank or depends negatively on one of equal or greater rank in any instantiated rule [31℄. Note thatthe program is strati�ed if all atoms with the same prediate symbol an be assigned the same rank. Theextension handles situations where the \reursive negation" is apparent, but not real. A typial example isthe program even(s(X)) not even(X):even(0):where eah ground atom an be given a rank equal to the power of s in its argument.To give a semantis to loally strati�ed programs Przymusinski [31℄ has given a de�nition for perfetmodel . Essentially,M is a perfet model (for a given ranking of atoms) if for all other modelsM0, if positive20
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literal p is the atom of least rank that is in one model, but not the other, then it is in M0. In other wordsthe perfet model minimizes positive literals of low rank in preferene to positive literals of greater rank.Przymusinski has shown that all loally strati�ed programs have a perfet model, and that it isindependent of the ranking system hosen (within the onstraints mentioned); moreover, on strati�edprograms, the perfet model agrees with the strati�ed model. We show that the well-founded semantisis an extension of this approah in the following sense.Theorem 6.1. If P is loally strati�ed, then it has a well-founded model, whih is idential to the perfetmodel.Proof. We take as the indutive hypothesis that for any atom p of rank k: if p is in the perfet model, it isin the well-founded partial model I1; and if p is not in the perfet model, then :p is in I1.The basis, k = 0, is immediate.For k > 0, �rst assume p is in the perfet model. Then we laim that there is an instantiated rule withp as head, say p q1; q2; : : : ; not r1; not r2; : : :suh that all qi are in the perfet model and no rj is in the perfet model. For if this were not so, weould remove p from the (supposedly) perfet model, and at worst have to add atoms of greater rank thanp (beause they have a rule ontaining not p) to restore the model. Sine the rj are of lower rank than p,the indutive hypothesis asserts that :rj are in I1. Also, any qi of lower rank than p are in I1.Now onsider a program onsisting of all instantiated rules for atoms of rank k whose subgoals of lowerrank are true in I1. We modify the rules by removing the subgoals of rank less than k, leaving a Hornprogram P00 (f. De�nition 5.3). Clearly the minimum model of P00 will be preisely the atoms of rank k inthe perfet model. But all suh atoms are also in I1. Moreover, the atoms of rank k not in the minimummodel of P00 form an unfounded set of P00 with respet to ; by Theorem 3.7. It follows from the onstrutionof P00 that these atoms also form an unfounded set of P with respet to I1, so their negations are in I1.7. Motivating ExamplesWhether a partiular model is the \right" one really depends on people's expetations. After all, programsare tools whose behavior needs to be understood and manageable by people. In this setion we omparewell-founded semantis with some other reent approahes based on anonial models, the stable modelsemantis outlined in Setion 5, and strati�ed semantis, whih has been studied by many researhers. Wepresent some examples to support our position that well-founded models are natural and intuitive.Example 7.1. This example is abstrated from the \Yale shootout" example due to Hanks and MDermott[13℄. The program P is noise(T ) loaded (T ); shoots(T ):loaded (0).loaded (T ) su(S; T ); loaded (S); not shoots(S):shoots(T ) triggers(T ):triggers(1).su(0; 1). 21
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We regard triggers and su as EDB prediates, and the others as IDB. The Herbrand instantiation of Pontains ground versions of the IDB rules as follows:noise(1) loaded (1); shoots(1):noise(0) loaded (0); shoots(0):loaded (1) su(0; 1); loaded (0); not shoots(0):loaded (1) su(1; 1); loaded (1); not shoots(1):loaded (0) su(0; 0); loaded (0); not shoots(0):loaded (0) su(1; 0); loaded (1); not shoots(1):shoots(1) triggers(1):shoots(0) triggers(0):Intuitively, sine we have no information that shoots(0) holds, we are led to the (presumably) intendedminimal model: loaded (0);:shoots(0);:noise(0);loaded (1); shoots(1); noise(1)However, an alternate minimal model exists:loaded (0); shoots(0); noise(0);:loaded (1); shoots(1);:noise(1)Sine noise(1) is not true in all minimal models, the irumsription approah does not allow it to beonluded, whih was a main point made in [13℄. However, the well-founded model is the intended one.To ompare with other approahes: The 2PC model and Fitting model are also the intended model here.The program is strati�ed, so the strati�ed semantis agrees with the well-founded semantis. The intendedmodel is also the unique stable model, as the alternate is not stable.In the preeding example, the 2PC and Fitting models were 2-valued, and gave the intended model. Thenext example typi�es the situation in whih we onsider the 2PC and Fitting models to be too weak anapproah.Example 7.2. Consider a program with the rules:p(X;Y ) b(X;Y ):p(X;Y ) b(X;U); p(U; Y ):e(X;Y ) g(X;Y ):e(X;Y ) g(X;U); e(U; Y ):a(X;Y ) e(X;Y ); not p(X;Y ):and the fats about b and g: b(1; 2) g(2; 3)b(2; 1) g(3; 2)22
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Apparently, p is the transitive losure of b and e is the transitive losure of g. We expet a to be the di�ereneof these two relations; in partiular, it seems that a(2; 3) is true. This appears to be the intended model,and is indeed the well-founded model, as well as the strati�ed model.There is another minimal model, in whih p(2; 3) and p(1; 3) are true and a(2; 3) is false. Moreover,this alternate model satis�es the Clark ompletion of the program as well. Thus by the method of logialonsequenes of the ompletion of the program, the status of a(2; 3) and other literals is either not addressed(2PC interpretation) or delared unde�ned (Fitting model, Kunen model).The riterion of stability reinfores the hoie of the well-founded model. The alternate model is inapableof reproduing itself in the manner de�ned in De�nition 5.3, and the intended model emerges as the uniquestable model.In fat, Kunen has reently shown that in his 3-valued logial onsequene semantis, a \strit" logiprogram without funtion symbols annot de�ne a prediate that is true in the transitive losure, false inits omplement, and nowhere unde�ned [18℄. Informally, a \strit" program is one in whih the dependeneof one prediate on another (or itself) is either through an even number of negations or through an oddnumber, but not both. Beause Kunen's semantis is di�erent from Fitting's, even on programs withoutfuntion symbols (see Example A.1 in the appendix), the question of whether a \strit" program is possiblein the Fitting semantis is open. Nonstrit programs in the Fitting semantis are known to exist, by thework of Immermann [14℄, but are quite ompliated; details are disussed elsewhere by Van Gelder [42℄.As another motivational example, we onsider a program that is not loally strati�ed, as de�ned inSetion 6, yet has a well-founded model when the EDB relation is ayli. A more involved example inwhih onstraints on the EDB an be spei�ed to guarantee that the well-founded model is total is disussedelsewhere [41℄.Example 7.3. This example is essentially the same as one disussed by Gelfond and Lifshitz [11℄, and isone of the examples that led to the formulation of well-founded semantis, as well as stable models. Interestly,this program turns out to be losely related to a game desribed by Kolaitis, and used to prove that thereare queries in �xpoint logi that are not expressible by strati�ed programs [16℄. In this respet, the programan be viewed as desribing a game where one wins if the opponent has no moves, as in hekers (draughts).winning(X) move(X;Y );not winning(Y ):Some sample move graphs are shown in Fig. 1. Whenever the move EDB relation is ayli (e.g., part (a)of the �gure), the well-founded total model is easily found, by proeeding \up" the direted graph. Part(b) shows a yli ase in whih the well-founded model is partial, but even when a yle is present in theEDB, there may be a well-founded total model (part ()). For this program, the Fitting model and the 2PCinterpretation agree with the well-founded model.However, the program is not loally strati�ed beause the Herbrand instantiation ontains a rule in whihwinning depends negatively upon itself, as inwinning(a) move(a; a);not winning(a):23



www.manaraa.com

����F ZZZZZZZ~�������= ����T �����R�����	����T�����	 �����R����F ����F ����F ����T SSSSSw�����/ ����F����F(a)

����? ���� �-
����??����T?����F(b)

����F ���� �-
����T?����F()Figure 1: Graphs for Example 7.3: (a) Ayli; (b) Cyli with partial model; () Cyli with total model.Entries T , F , and ? in the nodes indiate whether winning is true, false, or unde�ned in the well-founded(partial) model.This also destroys the perfet model even though move(a; a) does not our in the EDB.4 Reently,Przymusinska and Przmusinski have de�ned weakly perfet models to handle programs suh as this example[30℄.The next example was inspired by an informal presentation by K. Morris of Stanford University [27℄. Itshows how the negation issues addressed by this paper might easily arise in pratial settings.Example 7.4. We imagine a logi program that might be part of a VLSI CAD system, whose funtion is todisplay a VLSI hip that has been hierarhially de�ned. Eah objet is modeled as a series of layers, eahlayer being an array of grid points. The hierarhial de�nition spei�es basi and synthesized objets: basiobjets are distinguished by having base olors , while the olors of synthesized objets are de�ned wholly interms of their omponents, and an vary from point to point. The entire hip is the \root" objet. Figure 2shows an example in whih root objet a is synthesized from objets b, , d and e, whose further details arenot shown.Assume the program uses these prediates, whih may be treated as EDB relations for our purposes.� veSum(P0; P1;Pt) is true when P0 + P1 = Pt as two-dimensional vetors, the details of whoserepresentation do not onern us.4Exept in the trivial ase where the program has only one Herbrand model.24
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a
b

edd ss
Figure 2: VLSI objets for Example 7.4: Objet a is synthesized from b and  at level 1, and d and e at level2. The olor of objet a is \inherited" from  at the point represented by the lower dot; however this doesnot hold at the upper dot, beause  is dominated by d there.� omponent(Obj ; O1; P0; L) is true when objet Obj has a omponent O1 whose origin, or referenepoint, is P0, and whose layer number is L. For example, the hip might have many idential ALUsat di�erent points; they would all be the same O1, but would have various values of P0. The ALUsmight have adders as omponents, and the adders would have still smaller omponents. Within thesame Obj omponents might overlap, so the layer number spei�es their relative \vertial" order.� baseColor (Obj ;Pt ; C) means that C is the olor of basi objet Obj at point Pt .To speify the olor property in our rule syntax, we require two mutually reursive IDB relations. Theinterested reader an work out the equivalent rules using a single relation in a language that supports ariher syntax for rule bodies [21, 28℄.� olor (Obj ;Pt ; C) means that the visible olor of Obj at Pt is C (looking down from above).� dominated(Obj ;Pt ; O1; L1) holds when two objets that are omponents of the same Obj overlap atpoint Pt and the objet O1 is in the lower layer L1. For the objet in the higher layer to atuallyoverlap, it must have olor de�ned at that point.

25
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We now formulate rules for determining the olor C of a omponent Obj at a grid point Pt .olor (Obj ;Pt ; C) baseColor (Obj ;Pt ; C):olor (Obj ;Pt ; C) omponent(Obj ; O1; P0; L1);veSum(P0; P1;Pt);olor (O1; P1; C);not dominated (Obj ;Pt ; O1; L1):dominated (Obj ;Pt ; O1; L1) omponent(Obj ; O2; P0; L2);L1 � L2;veSum(P0; P2;Pt);olor (O2; P2; C2):Note that olor depends on itself negatively through the rule for dominated, as well as positively. The ruledesigner expets the omponent relation to be ayli in its �rst and seond arguments; i.e., O1 is expetedto be a subomponent of Obj .When the expeted ayliity holds, the well-founded model is easily found, just working up the datastruture. In this ase, the Fitting model is 2-valued, as is the 2PC model. However, there is no perfetmodel for essentially the same reason as in Example 7.3.When a yle is present in the EDB, olor annot be established for anything in the yle. For thisappliation, the yle presumably represents a design error. However, the well-founded semantis still de�nesolor orretly in parts of the hip not a�eted by the error.A theme that runs through these examples is that well-founded semantis frequently agrees with othersemantis, but seems to avoid their awkward ases. In this sense it seems quite robust.8. Computational ComplexityNot only do we want to formulate a reasonable semantis for negation, we also want the set of statementsderivable to be \reasonably omputable," as far as possible. Unfortunately, the well-founded partial modelis not neessarily reursively enumerable, a diÆulty it shares with most of the semantis disussed here.However, for funtion-free logi programs (a lass that has ome to be known as Datalog), the Herbranduniverse is �nite and the onstrution is e�etive. In this setion we show that the data omplexity of thewell-founded semantis, as de�ned by Vardi [44℄, is polynomial. From this standpoint it is ompetitive withother methods, suh as strati�ed semantis, whose data omplexity has been studied elsewhere [4, 44, 12,14℄, and the Fitting model (as remarked below).In this disussion of omplexity we restrit attention to funtion-free programs, so a program's Herbranduniverse is just the set of onstants appearing in it. We onsider a �xed IDB, PI (whih we allow to be anygeneral funtion-free logi program). As disussed before, PI an be thought of as a set of inferene rulesthat might be applied to various EDB's, or sets of fats. The prediates that appear as subgoals in PI , butdo not appear in the head of any rule, onstitute the EDB prediates. We represent an EDB, PE , as a setof positive ground literals ranging over the EDB prediates. (The onstants in PE may or may not appear26
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in PI .) Given an EDB PE , we form a logi program P(PE) = PI [ PE , and we denote its well-foundedpartial model by I1(PE). Finally, regard PI as de�ning the transformation from PE to I1(PE).De�nition 8.1. The data omplexity of an IDB is de�ned as the omputational omplexity of deidingthe answer to a ground atomi query as a funtion of the size of the EDB; in the ontext of well-foundedsemantis, this means deiding whether the ground atom is positive in the well-founded partial model.Sine the IDB is �xed, the prediates in the well-founded model have �xed number and arity (width,or number of argument plaes). Hene the Herbrand base has size that is polynomial in the size of theEDB. (Without funtion symbols, we may add any onstants appearing only in the query to the Herbranduniverse without having a signi�ant e�et on its size.) Also sine the IDB is �xed, the size of the Herbrandinstantiation of the program is polynomial in the size of the EDB.Theorem 8.1. The data omplexity of the well-founded semantis for funtion-free programs is polynomialtime.Proof. As usual in the proofs of suh theorems, we shall show that the entire well-founded (partial) modelan be onstruted in polynomial time, after whih any query an be answered immediately. The well-founded model is the least �xed point of the onstrution of I�, as desribed in De�nition 3.4. At eah stageof the indution, until the �xed point is reahed, at least one element of the Herbrand base H is added toI�+1, so the �xed point must be reahed in a number of steps polynomial in the size of the EDB. This sortof argument is standard; see [4, 44, 12, 14℄, et. Similar standard arguments show that alulating TP anbe done in polynomial time. So we need only show that eah UP (I�) an be found in polynomial time.Clearly, we may restrit attention to �nite �. We shall atually give a polynomial time onstrution of theset of ground atoms in (H �UP (I�)).De�ne �(J) as the transformation on sets of ground atoms, with impliit parameter I�, suh that: Aground atom p is in �(J) if and only if there is a ground instane of a rule in P, sayp b1; : : : ; bn; not 1; : : : ; not msuh that� no subgoal (bi or not j) is false in I�, and� all bi are in J .Let J = �(;). Clearly � is monotoni, and J reahes a limit J1 at a  that is polynomial in jH j.Suppose p 2 �(J) due to the rule shown above. This rule shows that if p were in UP (I�), then some bimust also be in that set. Thus by a trivial indution on , no atom in [ J is in UP (I�).To show that the set of ground atoms in H � J1 is unfounded w.r.t. I�, let q be any suh atom. Theneah rule with q as head has a subgoal that violates the ondition that would put q in �(J), for any . If theviolation is that some subgoal is false in I�, this satis�es ondition (1) for an unfounded set (De�nition 3.1);if the violation is that some positive subgoal is not in J for any , then that subgoal is in H�J1, satisfyingondition (2) for an unfounded set.It follows that J1 = (H �UP (I�)). 27
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The key idea in the above proof, to indutively onstrut the omplement of the greatest unfounded set,was �rst suggested to two of the authors by M. Y. Vardi, and later disovered independently by J. S. Shlipf.We remark that the Fitting model also has polynomial data omplexity (for funtion-free programs). Theproof is idential to that of Theorem 8.1 above, exept that a polynomial alulation of NP (see Def. 4.2)must be exhibited; but suh a alulation is routine.In ontrast, Marek and Truszzynski [24℄ have shown that, even for propositional general logi programsP, determining whether P has a stable model at all is NP-omplete.9. The Final Frontier?The major shortoming of the well-founded semantis that we have found onerns its inability to handleonlusions that an be reahed only by using fatoring or a similar tehnique, suh as \anestor resolution."Suh tehniques are known to be neessary for ompleteness of non-Horn proof systems, but not for sets ofHorn lauses. The need for fatoring arises prinipally from \proof by ases", and sometimes from \proofby ontradition".However, fatoring possibilities in the given program do not always arry over to the ompleted program,and a _ :a does not simplify to true in either 3-valued logi [9, 17℄ or intuitionisti logi [7℄. Thus autionis needed to keep a oherent system.The overly trivial P2 in Example 5.3 might lead one to believe that a fatoring apability an be easily\pathed in" by just heking for a negative subgoal that omplements the head of the rule; this onlusionwould be inorret, as shown by a not b:b not a:p a:p b:in whih we annot hoose between a and b, but might reasonably be expeted to notie that p musthold (in 2-valued logi). In general, reognizing that p is a (2-valued) logial onsequene of a �nite setof instantiated rules is o-NP-omplete. Furthermore, we normally start with rules that ontain variables.Thus, any extension of logi program semantis that depends on \true non-Horn reasoning" needs to beundertaken with great aution, and represents a signi�ant open problem.10. ConlusionWe have presented a new semantis, the well-founded semantis , for general logi programs that extendsseveral earlier proposals, and has advantages over them in that1. It is appliable to all programs.2. Compared to several other methods, a larger portion of the Herbrand base tends to be lassi�ed aseither true or false.3. Truth values are assigned (in the authors' judgement) in a reasonably preditable and intuitivelysatisfying way.Elsewhere, the expressive power of the well-founded semantis has been ompared to several forms of �xpointlogi [42℄. A orresponding proedural semantis has been reported for some lasses of programs [34, 32℄.28
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AknowledgementsWe wish to thank Jerzy Jaromzyk, Phokion Kolaitis, Vladimir Lifshitz, Wiktor Marek, Rodney Topor, andMoshe Vardi for helpful disussions and omments about this work. We also thank the anonymous refereesfor their areful readings of the manusript and many useful suggestions.The work of Kenneth Ross was supported in part by NSF grant IRI-8722886, by a grant from IBMCorporation, and by AFOSR under ontrat 880266. The work of John Shlipf was supported in part byNSF grants IRI-8705184 and IRI-8901566. The work of Allen Van Gelder was supported in part by NSFgrants CCR-8958590 and IRI-8902287.Appendix A Augmented ProgramsCertain programs exhibit undesirable behavior when interpreted in the Herbrand universe, due to theirontaining what is alled unsafe negation. A simple way to remove this behavior is to augment the program,as desribed in this appendix. We proeed informally here, and refer to [22℄ for a formal disussion.De�nition A.1. Any general logi program P has an assoiated augmented program that is formed byadding the apparently nonsensial rule: $p($f($)) $p($f($)):where $p, $f , and $ are symbols that do not our elsewhere in the program.Having the extra \$" terms in the augmented Herbrand universe adds in�nitely many elements to theHerbrand universe, elements that have no names in the original program. This ensures that goals with freevariables have \room to fail" when they should, even in their instantiated versions. Augmenting ahieves ane�et similar to Kunen's embedding the program in a language with in�nitely many funtion and onstantsymbols.Example A.1. In the following program, without inspeting the a relation, we would expet p to holdwherever a does. (Read d as \di�ers" and s as \same".)p(X) a(X); d(X;Y ):d(X;Y ) not s(X;Y ):s(U;U):a(1):The underlying idea is that, looking at the rule for s, we expet the formula 8Y s(X;Y ) to be false. But inthe unaugmented Herbrand universe of one element there is no \room" for s(1; Y ) to fail beause 1 is theonly term. As a result, p(1) fails. However, adding the apparently unrelated fat b(2) to the program meansthat s(1; Y ) an fail, by setting Y = 2. This in turn provides a true instane d(1; 2), allowing a proof ofp(1). Augmenting the program avoids this bizarre behavior; s(1; $) fails in all ases, making p(1) alwaysprovable, as intuition expets.To see why this program has unsafe negation, onsider a top-down sequene of goal redutions beginningwith p(1). Using the rules, p(1) redues to (a(1); d(1; Y )), a(1) redues to true, then d(1; Y ) redues to29
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not s(1; Y ). The ourrene of a free variable Y in the negative subgoal is alled \unsafe" beause it is notlimited to any domain. This derivation is said to have oundered [20℄.Finally, let us note that in the unaugmented program p(1) is false in the well-founded semantis and inthe Fitting semantis, but not in the 2PC semantis or Kunen semantis. Although p(1) is false in the only2-valued Herbrand model of the ompleted program, there are other 2-valued models in whih p(1) is true.All of these semantis agree that p(1) is true in the augmented program.As noted, the Herbrand universe for the augmented program is in�nite. As a result, our proof ofpolynomial data omplexity (Theorem 8.1) fails for the augmented program. But the result is still true foraugmented programs; we need only modify the proof slightly. The extra ground terms are all indiserniblewith respet to the prediates of the original language, so we an arry out the same onstrution using onlya �xed, �nite number (dependent upon the IDB) of the extra ground terms. Essentially, we need as manydistint $-terms as there are variables in a single rule.Referenes[1℄ K. R. Apt, H. Blair, and A. Walker. Towards a theory of delarative knowledge. In J. Minker, editor,Foundations of Dedutive Databases and Logi Programming, pages 89{148. Morgan Kaufmann, LosAltos, CA, 1988.[2℄ K. R. Apt and M. H. Van Emden. Contributions to the theory of logi programming. JACM, 29(3):841{862, 1982.[3℄ F. Bry. Logi programming as onstrutiveism: a formalization and its appliation to databases. InEighth ACM Symposium on Priniples of Database Systems, pages 34{50, 1989.[4℄ Ashok Chandra and David Harel. Struture and omplexity of relational queries. JCSS, 25(1):99{128,1982.[5℄ A. Chandra and D. Harel. Horn lause queries and generalizations. Journal of Logi Programming,2(1):1{15, 1985.[6℄ K. L. Clark. Negation as failure. In Gallaire and Minker, editors, Logi and Databases, pages 293{322.Plenum Press, New York, 1978.[7℄ M. A. E. Dummett. Elements of Intuitionism. Clarendon Press, Oxford, 1977.[8℄ Ph. M. Dung and K. Kanhanasut. A natural semantis for logi programs with negation. Tehnialreport, Asian Institute of Tehnology, Bankok 10501, Thailand, 1989. (manusript).[9℄ M. Fitting. A Kripke-Kleene semantis for logi programs. Journal of Logi Programming, 2(4):295{312,1985.[10℄ M. Gelfond. On strati�ed autoepistemi theories. In Pro. AAAI, 1987.[11℄ M. Gelfond and V. Lifshitz. The stable model semantis for logi programming. In Fifth Int'l Conf.Symp. on Logi Programming, pages 1070{1080, Seattle, 1988.30
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