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1. Introdu
tionThere has been mu
h re
ent work on extending Horn rule logi
 programs to in
lude negative subgoals, givingwhat are 
alled general logi
 programs. This resear
h has pro
eeded in two general dire
tions, whi
h maybe summarized as the \program 
ompletion" approa
h and the \
anoni
al model" approa
h.1.1. Program Completion Semanti
sThe original \program 
ompletion" approa
h, due to Clark [6℄, and dis
ussed in detail by Shepherdson [37,38℄, Kunen [17℄, and Lloyd [20℄, has been to de�ne a new program, 
alled the 
ompleted program (sometimes
alled the 
ompleted database). The 
ompleted program is treated simply as a �rst order formula (seeSe
tion 4). Then the negative literals that are logi
al 
onsequen
es of the 
ompleted program, and onlythose, should be 
onsidered true. The same applies to positive literals, so the 
ompletion treats positiveand negative literals symmetri
ally. A proof method that supports this approa
h, 
alled SLDNF (SLDresolution plus the negation as failure rule) has been studied extensively. A 
losely related idea, the 
losedworld assumption, was introdu
ed in the 
ontext of dedu
tive databases by Reiter [33℄. The generalized
losed world assumption was proposed by Minker to handle disjun
tive databases [25℄ without produ
ing thein
onsisten
y typi
al of the 
losed world assumption; it is dis
ussed in Example 3.1.SLDNF is applied to the original program. Clark showed the pro
edure to be sound in the sense that if agoal has a �nite SLDNF derivation, then it is a logi
al 
onsequen
e of the 
ompleted program. Ja�ar, Lassezand Lloyd showed that SLDNF was 
omplete (in the same sense) for Horn programs with non-
ounderingqueries 
onsisting of a 
onjun
tion of positive and/or negative literals [15℄. SLDNF was further investigatedfor general logi
 programs by Lloyd [20℄ (who 
oined the term SLDNF), Shepherdson [37, 38℄ (q.v. forfurther bibliography), and others. This approa
h is \logi
ally" impe

able, but does not address the issue ofhow the 
ompiler or the interpreter of the general logi
 program should treat atoms (goals) whose positiveand negative literals are neither logi
al 
onsequen
es of the 
ompletion: the interpreter is not allowed toeither su

eed or fail. Also, for some programs the 
ompleted program is in
onsistent; for some others, the
ompleted program is 
onsistent but unintuitive. More importantly, on many natural examples it yields asurprisingly weak reasoning ability. We shall illustrate these 
laims with examples in Se
tion 7.Fitting [9℄ and Kunen [17℄ gave markedly di�erent, more uniform, semanti
s by interpreting the 
ompletedprogram in a 3-valued 
onstru
tive logi
, elegantly eliminating some diÆ
ulties of the Clark program
ompletion approa
h. The third truth value, ?, 
onnotes unknown truth value and is \less informationthan" both true and false, whi
h are in
omparable. Fitting showed that the 
ompletion of every programhas a (unique) minimum 3-valued model, and suggested that this model be taken for the semanti
s of theprogram. Kunen des
ribes a variant that is always re
ursively enumerable, and 
hara
terizes the 3-valuedlogi
al 
onsequen
es of the 
ompleted program. From our point of view, however, these semanti
s are alsotoo weak to 
apture the \
ommon sense" notion of negation as failure, as dis
ussed later in the motivatingexamples (Se
tion 7).A rather di�erent approa
h to negation is to interpret general rules as disjun
tive 
lauses. In this
ontext, the generalized 
losed world assumption 
on
ludes that p is false if there is no minimal positivedisjun
tion p_q1_� � �_qk that is a (2-valued) logi
al 
onsequen
e of the 
lauses [25℄. Here k may be zero, sothat p is simply true. Disjun
tive databases are quite di�erent from logi
 programs be
ause 
lauses have no\dire
tion". Thus a not b and b not a are treated alike, as a_b. Example 3.1 illustrates this distin
tion.2
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1.2. Canoni
al Model Semanti
sThe \
anoni
al model," or \preferred model," approa
h has been to de
lare that a 
ertain model of theoriginal program is presumed to be the \intended" one, i.e., the one that the programmer and program usershave in mind. The justi�
ation for 
hoosing the preferred model relies on an appeal to \
ommon sense," andwhat people who write or read the program are likely to think it means. R. W. Topor and E. A. Sonenbergproposed the term \
anoni
al model" to des
ribe a model that is sele
ted (often from many in
omparableminimal models) to represent the \meaning" of a logi
 program or dedu
tive database. The advantage ofassigning a 
anoni
al model to a program is that one now has a standard for 
orre
tness of an interpreter1on all goals { it must 
onform to the 
anoni
al model, and su

eed or fail appropriately. See [41℄ for adis
ussion of how the 
anoni
al model approa
h 
an bene�t appli
ation development.Another motivation for 
on
entrating on 
anoni
al models is the view, expounded by Reiter [33℄, thatmany logi
 programs are appropriately thought of as having two 
omponents, an intensional database (IDB)that represents the reasoning 
omponent, and the extensional database (EDB) that represents a 
olle
tionof fa
ts. Over the 
ourse of time, we may want to \apply" the same IDB to many quite di�erent EDBs.In this 
ontext the properties of the IDB merit 
areful study, and it makes sense to think of the IDB asimpli
itly de�ning a transformation from an EDB to a set of derived fa
ts; we would like the set of derivedfa
ts to be the 
anoni
al model. For �nite 
ases the 
omputational 
omplexity of this transformation 
an bestudied; see Se
tion 8.One problem with the 
anoni
al model approa
h is that some programs may not have a 
anoni
al model,or if they do, it is un
lear that the model mat
hes the users' expe
tations. A further diÆ
ulty is that the
anoni
al model may be 
omputationally infeasible. One line of resear
h has been to look for a de�nition ofthe 
anoni
al model that will apply to as broad a 
lass of programs as possible. Two 
lasses of programs thathave been studied are 
alled strati�ed and lo
ally strati�ed . The strati�ed 
lass has been treated in [5, 1, 19,40℄, and elsewhere. The lo
ally strati�ed 
lass, de�ned and studied by Przymusinski [31℄, is a superset ofthe 
lass of strati�ed programs. He de�ned perfe
t models, and showed that every lo
ally strati�ed programhas a unique perfe
t model. These 
lasses are dis
ussed further in Se
tion 6.For a while there was a feeling that programs that were not at least lo
ally strati�ed probably didnot really make good sense, that they were inherently ambiguous, and thus faulty. Thus failure to have aperfe
t model was thought to indi
ate a 
aw in the program rather than in the de�nition of perfe
t models.Re
ent experien
e has 
ast doubt on this attitude (see [11℄ for dis
ussion), and spurred the sear
h for furtherimprovements in the de�nition of the \
anoni
al model."Gelfond and Lifs
hitz propose an elegant de�nition of a stable model that is 
losely related to our work[11℄. Drawing on ideas in [10℄, they de�ne a \stable model" as one that is able to reprodu
e itself in a 
ertainsense; a program may have zero, one, or many stable models. In their s
heme, when a program has a uniquestable model, that is is 
onsidered to be its 
anoni
al model. They argue that the unique stable model isthe natural one to asso
iate with a logi
 program, and des
ribe some of its properties. Stable models aredis
ussed further in Se
tion 5.1.3. Well-Founded Semanti
sThis paper proposes a new de�nition of 
anoni
al model, whi
h we 
all the well-founded model. We showthat for lo
ally strati�ed programs the perfe
t model 
oin
ides with the well-founded model; in addition,1By \interpreter," we mean any me
hanism for exe
uting the program, in
luding a 
ompiler.3
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ertain programs that are not lo
ally strati�ed have a well-founded model. Examples are given in Se
tion 7.But even when a program has no well-founded total model, it has a well-founded partial model; thuswe de�ne the well-founded semanti
s of any general logi
 program to be that literals in the well-foundedpartial model are true, their 
omplements are false, and other literals' truth values are not determined bythe program. Thus, a partial model 
an also be viewed as a model in 3-valued logi
. This relationship isdis
ussed in Se
tion 4.While strati�
ation is a synta
ti
 property of the IDB, for an unstrati�ed IDB, whether the programhas a total well-founded model depends in general on the EDB. One view of well-founded semanti
s is asan attempt to give a reasonable meaning to as mu
h of the program as possible in the unfavorable 
ases,when only a partial model exists, as an extension of the semanti
s for the favorable 
ases, whi
h have a totalmodel.The key idea in our formulation is the 
on
ept of an \unfounded set," whi
h is an adaptation of the\
losed set" developed for disjun
tive databases by Ross and Topor [35℄, and is essentially the same as the\se
urable set" in [36℄. Unfounded sets are de�ned in Se
tion 3.Sin
e the preliminary version of this paper was presented at a 
onferen
e [43℄, several alternativeformulations of negation that appear to be equivalent to the well-founded semanti
s have been developed[3, 8, 32, 42℄. We believe that this indi
ates a robustness of the semanti
s, and provides eviden
e that it
oin
ides well with \
ommon sense" and intuition.2. General Logi
 Programs and Partial InterpretationsIn this se
tion we introdu
e our notation and basi
 de�nitions, and des
ribe the 
lass of general logi
 programsthat we shall be 
onsidering in this paper.De�nition 2.1. A general logi
 program is a �nite set of general rules , whi
h may have both positive andnegative subgoals. A general rule is written with its head , or 
on
lusion on the left, and its subgoals (body),if any to the right of the symbol \ ," whi
h may be read \if." For example,p(X) a(X); not b(X):is a rule in whi
h p(X) is the head, a(X) is a positive subgoal, and b(X) is a negative subgoal. This rulemay be read as \p(X) if a(X) and not b(X)." A Horn rule is one with no negative subgoals, and a Hornlogi
 program is one with only Horn rules.Lloyd has re
ently adopted the word \normal" instead of \general" to des
ribe rules whose bodies 
onsistof a 
onjun
tion of literals, and programs of su
h rules [20℄. He reserves the word \general" to allow moreinvolved 
onstru
ts, su
h as w(X) m(X;Y ); not (m(Y; Z); not w(Z)):where the �rst not applies to a 
onjun
tion rather than an atom. Although we avoid su
h 
onstru
ts forsimpli
ity of presentation, the well-founded semanti
s is easily generalized to su
h syntax, so we 
ontinue touse the word \general." 4
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In keeping with Prolog's 
onvention, logi
al variables begin with a 
apital letter; 
onstants, fun
tions,and predi
ates begin with a lower
ase letter. We use the same symbol, e.g., p, to refer to both a predi
ateand its relation. The arguments of a predi
ate are terms as 
ustomarily de�ned in logi
:1. A variable or 
onstant is a term.2. A fun
tion symbol with terms as arguments is a term.Terms may also be viewed as data stru
tures of the program, with fun
tion symbols serving as re
ord names.The word ground is used as a synonym for \variable-free," in keeping with 
ommon pra
ti
e. Often a
onstant is treated as a fun
tion symbol of arity zero.The Herbrand universe is the set of ground terms that use the fun
tion symbols and 
onstants thatappear in the program.2 The Herbrand base is the set of atomi
 formulas formed by predi
ate symbols inthe program whose arguments are in the Herbrand universe. If the program 
ontains a fun
tion symbolof positive arity, then the Herbrand universe and Herbrand base are 
ountably in�nite; otherwise they are�nite.We shall be 
onsidering atoms in the Herbrand base and ground rules whose variables have beeninstantiated to elements of the Herbrand universe, whi
h we 
all instantiated rules.De�nition 2.2. The Herbrand instantiation of a general logi
 program is the set of rules obtained bysubstituting terms in the Herbrand universe for variables in every possible way. An instantiated rule is onein the Herbrand instantiation. Whereas \uninstantiated" logi
 programs are assumed to be a �nite set ofrules, instantiated logi
 programs may well be in�nite.Certain programs exhibit a property 
alled unsafe negation, whi
h 
an 
ause anomalous behavior ifinterpreted in the Herbrand universe. Appendix A explains a way to \augment" su
h programs byintrodu
ing an extra rule that removes the anomalies by enlarging the Herbrand universe. Our developmentis independent of whether this augmentation is used or not.We shall be working extensively with sets of literals, for whi
h we now introdu
e some notation andde�nitions. If p is an atomi
 formula (atom), then p is its positive literal, :p is its negative literal, and thesetwo literals are said to be 
omplements of ea
h other.De�nition 2.3. For a set of literals S we denote the set formed by taking the 
omplement of ea
h literalin S by : � S.� We say literal q is in
onsistent with S if q 2 : � S.� Sets of literals R and S are in
onsistent if some literal in R is in
onsistent with S, i.e., ifR \ : � S 6= ;� A set of literals is in
onsistent if it is in
onsistent with itself; otherwise it is 
onsistent .2If there is no 
onstant symbol in the program, then one is added arbitrarily.5
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De�nition 2.4. Given a program P, a partial interpretation I is a 
onsistent set of literals whose atomsare in the Herbrand base of P. A total interpretation is a partial interpretation that 
ontains every atom ofthe Herbrand base or its negation. We say a ground (variable-free) literal is true in I when it is in I andsay it is false in I when its 
omplement is in I . Similarly, we say a 
onjun
tion of ground literals is true inI if all of the literals are true in I , and is false in I if any of its literals is false in I .De�nition 2.5. We say that an instantiated rule is satis�ed in a partial or total interpretation I if thehead is true in I or some subgoal is false in I ; it is falsi�ed if the head is false and all subgoals are true. Inaddition, if the head of the rule is false in I , but no subgoal is false in I then we say that the rule is weaklyfalsi�ed in I .De�nition 2.6. A total model of a program P is a total interpretation su
h that every instantiated rule ofP is satis�ed. A partial model of P is a partial interpretation that 
an be extended to a total model of P.Although it is 
ustomary to omit the adje
tive \total" when speaking of interpretations and models,be
ause we shall be dealing with both 2-valued and 3-valued logi
s, we shall in
lude it for 
larity.Intuitively, a partial interpretation may 
ontain in
omplete information: the positive literals in it are
onsidered to be true atomi
 fa
ts; the negative literals denote atoms 
onsidered to be false; and the truthvalues of the rest of the atomi
 fa
ts are unknown, or unspe
i�ed, at least \at present." The natural orderingon partial interpretations is �. The idea is that I � I 0 if I 0 
ontains all the information in I , both positiveand negative, plus possibly more.For us, a partial model is a partial interpretation I su
h that some instantiated rules may not be satis�ed,but there is a (possibly empty) set of literals whose addition to the partial interpretation will satisfy all rules.Clearly, this is impossible if I falsi�es any instantiated rule. If I only weakly falsi�es some instantiated rule,then the addition of some negative literal to I may be ne
essary to satisfy that rule. Thus re
ognition ofpartial models 
ontaining weakly falsi�ed rules may be very diÆ
ult. The following lemma shows that thesituation is mu
h simpler if I does not weakly falsify any instantiated rule.Lemma 2.1. Let P be a program and let I be a partial interpretation. If I weakly falsi�es no instantiatedrule from P, then I is a partial model of P.Proof. Let I 0 be the total interpretation formed by adding to I all atoms in the Herbrand base that areneither true nor false in I . Let r be an instantiated rule from P. If I satis�es r, then 
learly so does I 0. If Idoes not satisfy r, then the head of r 
annot be false in I , so it is true in I 0. Hen
e I 0 is a total model.Our notion of partial model is not the same as the natural notions of models used in 3-valued logi
s,su
h as in the approa
hes of Fitting [9℄ and Kunen [17℄. Nevertheless, the well-founded partial model we
onstru
t will also be a model in Fitting's 3-valued sense. We shall dis
uss 3-valued models in Se
tion 4.6
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3. Unfounded Sets and Well-Founded Partial ModelsIn this se
tion we de�ne unfounded sets , whi
h are a variation of 
losed sets that were de�ned for disjun
tivedatabases by Ross and Topor in [35℄. Unfounded sets provide the basis for negative 
on
lusions in thewell-founded semanti
s.3.1. Unfounded SetsDe�nition 3.1. Let a program P, its asso
iated Herbrand base H , and a partial interpretation I be given.We say A � H is an unfounded set (of P) with respe
t to I if ea
h atom p 2 A satis�es the following
ondition: For ea
h instantiated rule R of P whose head is p, (at least) one of the following holds:1. Some (positive or negative) subgoal q of the body is false in I .2. Some positive subgoal of the body o

urs in A.A literal that makes (1) or (2) above true is 
alled a witness of unusability for rule R (with respe
t to I).Intuitively, we regard I as what we already know about the intended model of P (possibly partial). Rulessatisfying 
ondition (1) are not usable for further derivations sin
e their hypotheses are already known to befalse.Condition (2) is the unfoundedness 
ondition: of all the rules that still might be usable to derive somethingin the set A, ea
h requires an atom in A to be true. In other words, there is no one atom in A that 
an be�rst to be established as true by the rules of P (starting from \knowing" I). Consequently, if we 
hoose toinfer that some or all atoms in A are false, there is no way we 
ould later have to infer one to be true.As des
ribed more formally later, the well-founded semanti
s uses 
onditions (1) and (2) to draw negative
on
lusions. Essentially, it simultaneously infers all atoms in A to be false. By 
ontrast, the semanti
s of [9℄uses only 
ondition (1) to draw negative 
on
lusions. The 
losed sets of Ross and Topor [35℄ were de�nedonly with 
ondition (2).Example 3.1. Consider the program 
onsisting of the eight (instantiated) rules below.p(a) p(
); not p(b):p(b) not p(a):p(e) not p(d):p(
).p(d) q(a); not q(b):p(d) q(b); not q(
):q(a) p(d):q(b) q(a):The atoms fp(d); q(a); q(b); q(
)g form an unfounded set with respe
t to ;. In parti
ular, fq(
)g is unfoundeddue to Condition (1); there is no rule usable to establish its truth. The set fp(d); q(a); q(b)g is unfoundeddue to Condition (2); we are given no way to establish p(d) without �rst establishing q(a) or establishing q(b)(whether we 
an establish :q(b) to support the �rst rule for p(d) is irrelevant for determining unfoundedness).7
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Also, there is no way to establish q(a) without �rst establishing p(d), and no way to establish q(b) without�rst establishing q(a). Clearly q(
) 
an never be proven, but we 
an also see that among p(d), q(a), and q(b),none 
an be the �rst to be proven.In 
ontrast, the pair fp(a); p(b)g does not form an unfounded set even though they depend on ea
h other,be
ause the only dependen
e is \through" negation. It is tempting to 
laim that the proof attempts for p(a)and p(b) will fail also, but su
h a 
laim is faulty.The di�eren
e between sets fp(d); q(a); q(b)g and fp(a); p(b)g is this: De
laring any of p(d), q(a), or q(b)false does not 
reate a proof that any other element of the set is true. However, as soon as one of p(a) orp(b) is de
lared false, it be
omes possible to prove the other is true. And if both are de
lared false at on
e,we have an in
onsisten
y.The treatment of p(a) and p(b) has something of the 
avor of the generalized 
losed world assumption(GCWA), in that (p(a) _ p(b)) is a (2-valued) logi
al 
onsequen
e of the program interpreted as inde�nitedisjun
tive 
lauses; 
onsequently GCWA also de
lines to 
onsider them false. However, GCWA behaves quitedi�erently in general. For example, (p(e) _ p(d)) is also a logi
al 
onsequen
e, so GCWA does not 
onsiderp(d) false, whereas the well-founded semanti
s does. Similar remarks apply to q(a) and q(b). (However, q(
)is 
onsidered false by GCWA; it is in the positive disjun
tion (q(
) _ p(d) _ p(e)), but this disjun
tion isnot minimal .) As a further di�eren
e, after p(d) is 
lassi�ed as false in the well-founded semanti
s, p(e) willbe
ome derivable. It is a property of GCWA that the atoms 
onsidered false 
annot be used to support anyfurther derivations.Simultaneously negating all the atoms in an unfounded set generalizes negation by failure in Horn 
lauseprograms; if H is the Herbrand base and I is the set of atoms that represents the minimum Herbrand modelof a Horn 
lause program [39℄, then H � I , the set of atoms not in I , is unfounded with respe
t to I .We now formalize the intuition of the pre
eding dis
ussion. It is immediate that the union of arbitraryunfounded sets is an unfounded set. This leads naturally to:De�nition 3.2. The greatest unfounded set (of P) with respe
t to I , denoted UP (I), is the union of all setsthat are unfounded with respe
t to I .We now make some easy, but instru
tive, observations about unfounded sets. To a 
ertain extent, there isa 
exibility between having :p 2 I and having p in an unfounded set. The following lemma shows that, givenan interpretation R, if we dedu
e that 
ertain fa
ts S are in an unfounded set A and add their 
omplementsto R, other unfounded atoms remain unfounded.Lemma 3.1. Let R be a set of literals, and let A be an unfounded set of P with repe
t to R. For any subsetS � A, A� S is unfounded with respe
t to R [ : � S.Proof. Any witness of unusability that was an atom in S is now a negative literal in : �S, and hen
e is stilla witness.The next lemma demonstrates a 
onne
tion between (la
k of) weak falsi�
ation (De�nition 2.5) andunfounded sets. Re
all from Lemma 2.1 that I in the next lemma is a partial model.8
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Lemma 3.2. Let I be a partial interpretation 
onsisting of positive literals Q and negative literals : �S. IfI does not weakly falsify any instantiated rule of program P, then S is an unfounded set with respe
t to Q.Proof. Let p 2 S and let R be any instantiated rule whose head is p. Be
ause R is not weakly falsi�ed,some subgoal of R is false in I . If this subgoal is positive, it is also in S, so 
ondition (2) of De�nition 3.1 issatis�ed. If this subgoal is negative, its positive version is in Q so 
ondition (1) is satis�ed.3.2. Well-Founded Partial ModelsWe now 
onsider a (possibly trans�nite) sequen
e that results from 
ombining two set transformations. Thelimit of this sequen
e de�nes the well-founded semanti
s. In what follows the word transformation alwaysmeans a transformation between sets of literals, where their atoms are in the Herbrand base of a givenprogram P. We re
all that a transformation T is 
alled monotoni
 if T (I) � T (J), whenever I � J .De�nition 3.3. Transformations TP , UP , and WP are de�ned as follows:� p 2 TP (I) if and only if there is some instantiated rule R of P su
h that R has head p, and ea
hsubgoal literal in the body of R is true in I .� UP (I) is the greatest unfounded set of P with respe
t to I , as in De�nition 3.2.� WP (I) = TP (I) [ : �UP (I).Lemma 3.3. TP , UP , and WP , are monotoni
 transformations.Proof. Immediate from de�nitions.We wish to emphasize that, unlike some other methods, our TP treats positive and negative subgoalssymmetri
ally. In de
iding whether a negative subgoal not p is true, some methods look for the absen
e ofp from I . For us the presen
e or absen
e of p is immaterial for the truth of the subgoal not p; we requirethe presen
e of :p.De�nition 3.4. Let � range over all 
ountable ordinals. The sets I� and I1, whose elements are literalsin the Herbrand base of a program P, are de�ned re
ursively by:1. For limit ordinal �, I� = [�<� I�Note that 0 is a limit ordinal, and I0 = ;.2. For su

essor ordinal � = 
 + 1, I
+1 = WP (I
)3. Finally, de�ne I1 = [� I�9
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Following Mos
hovakis [29℄, for any literal p in I1, we de�ne the stage of p to be the least ordinal � su
hthat p 2 I�. We observe that the stage is always a su

essor ordinal for literals in I1.Lemma 3.4. I� as de�ned in De�nition 3.4 is a monotoni
 sequen
e of partial interpretations (i.e., is
onsistent).Proof. The proof is by indu
tion on �. The basis, � = 0, is immediate. For � > 0, assume the lemma istrue for � < �.For monotoni
ity, �rst let � = 
 + 1 be a su

essor ordinal. if literal q 2 I
 , there is a smallest � < 
su
h that q 2WP (I�) (even if 
 is a limit ordinal). But WP is monotoni
, so by the indu
tive hypothesisq 2WP (I
). Monotoni
ity for limit � follows from the de�nition of I�.To show 
onsisten
y for su

essor ordinal � = 
 + 1, note that every literal in I� �rst appears in someI�+1, i.e., at a su

essor ordinal \stage". Let A be any set of positive ground literals that has a nonemptyinterse
tion with (the positive literals of) I
+1. It is suÆ
ient to show that A is not unfounded w.r.t. I
 ,for then the greatest unfounded set of I
 is also disjoint from the positive part of I
+1. Choose the earliestI�+1 that interse
ts A and sele
t an atom p in that interse
tion. Then p was derived by some rule R all ofwhose subgoals are in I� . By the indu
tive hypothesis, those subgoals are also in I
 , and I
 is 
onsistent,so none of the subgoals is false in I
 . By the 
hoi
e of �, they are not in A. Thus rule R has no witness ofunusability, whi
h demonstrates that A is not an unfounded set w.r.t. I
 .For limit ordinal � > 0, to show that I� is a partial interpretation, assume the lemma is true for � < �.If both q and :q are in I�, there is some su

essor ordinal 
 + 1 < � su
h that the same is true. This
ontradi
ts the indu
tive hypothesis.It follows by 
lassi
al results of Tarski that I1 is the least �xed point of the operator WP . The Herbrandbase is 
ountable, so for some 
ountable ordinal �, I1 = I�.De�nition 3.5. The 
losure ordinal for the sequen
e I� is the least ordinal � su
h that I1 = I� (
f. [29℄).Examples 
an be 
onstru
ted where the 
losure ordinal is above !, but the authors believe su
h examplesto be very rare in pra
ti
al logi
 programming. In the 
ase of a fun
tion-free program with a �nite EDB,whi
h is 
ommon in dedu
tive databases, the limit is rea
hed after a �nite ordinal. The \data 
omplexity"of this 
ase is dis
ussed in Se
tion 8.De�nition 3.6. The well-founded semanti
s of a program P is the \meaning" represented by the least�xed point of WP , or the limit I1 des
ribed above; every positive literal denotes that its atom is true,every negative literal denotes that its atom is false, and missing atoms have no truth value assigned by thesemanti
s.
10
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Lemma 3.5. Let I� be as de�ned in De�nition 3.4. Then I� does not weakly falsify (De�nition 2.5) anyinstantiated rule of P.Proof. Let R be any instantiated rule with head p su
h that :p 2 I�. We need to show that the body ofR is false in I�. By de�nition, p 2 UP (I�) for some � < �. By Lemma 3.4, I� � I�+1 � I�. Either thebody of R is false in I� , or some subgoal q of the body of R is in the greatest unfounded set w.r.t. I� . Inthe latter 
ase, :q 2 I�+1, so the body of R is false in I�+1. In either 
ase, it follows that the body of R isfalse in I�.Theorem 3.6. For ea
h 
ountable ordinal �, I� in the sequen
e des
ribed in De�nition 3.4 is a partialmodel of P.Proof. Immediate by Lemmas 2.1 and 3.5.De�nition 3.7. Suppose that for ea
h p in the Herbrand Base I1 
ontains either p or :p, i.e. I1 is a totalinterpretation. Then by the above theorem, I1 is a total model, and we 
all this the well-founded model ;otherwise we 
all I1 the well-founded partial model .Theorem 3.7. Every Horn program has a well-founded model I1, whi
h is the minimum model in thesense of Van Emden and Kowalski [39℄, i.e., its positive literals are 
ontained in every Herbrand model.Proof. Let H be the Herbrand base and let Q be the set of positive literals of I1. Q is a �xed point of TP[39℄. In view of Theorem 3.6 it is suÆ
ient to show that H �Q � UP (I1). Let p be any positive literal inH � Q. Ea
h rule for p must have a positive subgoal that is also in H � Q, whi
h subgoal is a witness ofunusability for this rule. Thus H �Q is unfounded w.r.t. ;, and a fortiori w.r.t. I1.4. Three-Valued Models of the Program CompletionThe relationship of the well-founded semanti
s to other methods based on program 
ompletion and 3-valuedlogi
s is dis
ussed in this se
tion. Clark introdu
ed the 
ompleted program as a way of formalizing thenotion that fa
ts not inferable from the rules in the program were to be regarded as false [6℄. Fitting studiedmodels of the 
ompleted program in a 3-valued logi
, and showed that all su
h models were �xed points ofa 
ertain operator [9℄. We show that the well-founded partial model is also a model in this logi
, but oftennot the least model.The idea behind the Clark 
ompletion of a program is to 
olle
t all rules having the same head predi
ateinto a single rule whose body is a disjun
tion of 
onjun
tions, then repla
e the \if" symbol, \ ," by \$."This states in e�e
t that the predi
ate is 
ompletely de�ned by the given rules. The formal details, in
ludinghandling of variables and introdu
tion of axioms for equality, are des
ribed in several pla
es [6, 2, 20, 9, 17℄.Example 4.1. Re
all the last four rules of Example 3.1, whose atoms formed an unfounded set:p(d) q(a); not q(b):p(d) q(b); not q(
):q(a) p(d):q(b) q(a):11
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The Clark 
ompletion 
ombines the rules for p into one rule, 
ombines the rules for q into another rule, thenrepla
es \ " by \$". After some simpli�
ations to eliminate bound variables, there results:p(d)$ (q(a) ^ :q(b)) _ (q(b) ^ :q(
)))8X [q(X)$ ((X = a) ^ p(d)) _ ((X = b) ^ q(a))℄The equality freeness axioms (often 
alled the Clark Equality Theory or CET) are also part of the 
ompletedprogram. Roughly, they require a one to one interpretation of the terms, so that q(
) 
annot be made trueby setting 
 = a or 
 = b.The original \logi
al 
onsequen
e" approa
h essentially de
lares that only 
on
lusions that are logi
al
onsequen
es (in the 
lassi
al, 2-valued sense) of the 
ompleted program should be inferred [6, 15, 20, 37℄.When the 
ompleted program is 
onsistent, this approa
h impli
itly de�nes a 3-valued interpretation: assignvalue true to instantiated atoms that are true in all (2-valued, not ne
essarily Herbrand) models of the
ompleted program, false to instantiated atoms that are false in all models, and ? (unknown) to all otherinstantiated atoms. However, be
ause the truth of ea
h literal is based on traditional 2-valued logi
, we 
allthis the 2-valued program 
ompletion (2PC) interpretation.The 3-valued interpretations were made expli
it by Fitting [9℄ and Kunen [17℄, who also used 3-valuedlogi
 to evaluate formulas. Whereas (p _ :p) must be true in 2-valued logi
, in 3-valued logi
 it may alsobe ?. In addition, the \$" produ
ed by the program 
ompletion pro
ess was interpreted as  Lukasiewi
z'soperator of \having the same truth value," so that?$ ? evaluates to true. Fitting's and Kunen's treatmentseliminated some anomalies in the 2PC interpretation.Example 4.2. Consider the single rule programp not p; not q:The Clark 
ompletion is p$ (:p ^ :q)q $ falsewhi
h has no 2-valued model. (The se
ond rule derives from false representing the empty disjun
tion of q'srule bodies.) However, if we add the \meaningless" rule, p p, the 
ompleted program 
hanges to:p$ (:p ^ :q) _ pq $ :truewhi
h has the unique 2-valued model, fp; :qg. If, instead, we add the \meaningless" rule, q  q, the
ompleted program 
hanges to: p$ (:p ^ :q)q $ qwhi
h has a di�erent 2-valued model, f:p; qg. However, all three versions have 3-valued models in whi
hp = ?. 12
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Finally, as suggested by a referee, if we add several rules, giving:p not p; not q:q  r:q  s:r  r:s s:the 
ompleted program be
omes: p$ (:p ^ :q)q $ (r _ s)r $ rs$ sNow there are three 2-valued models, whi
h vary on whether r or s or both are true. Their 
ommon part(interse
tion) is the same 2PC interpretation as above, f:p; qg. However, here the 2PC interpretation is nota 3-valued model .One prin
ipal result in [9℄ is that the 
ompletion of every program has a (unique) minimum 3-valuedHerbrand model. Fitting suggests that this model be taken for the semanti
s of the program, and hereafterwe 
all it the Fitting model . Thus the Fitting model is sometimes \less de�ned" than the 2PC interpretation,as in the previous example. However, Example A.1 in Appendix A shows that the 2PC interpretation 
anbe \less de�ned" than the Fitting model.To any partial interpretation I (in 2-valued logi
) there 
orresponds the obvious 3-valued interpretationin whi
h atoms missing from I are assigned the truth value ?. In this setting, our partial interpretationsare the same as Fitting's basi
 sets [9℄. In 3-valued logi
 literals and 
onjun
tions are true and false in I asspe
i�ed in De�nition 2.4; in addition, the truth value ? may be assigned:De�nition 4.1. Literal q is 
alled unde�ned in I , denoted by \?", if neither q nor its 
omplement is in I .A 
onjun
tion of literals evaluates to unde�ned in I if no literal in the 
onjun
tion is false in I and at leastone is unde�ned in I .De�nition 4.2. NP is de�ned as the transformation that, for I a 3-valued interpretation, gives as NP (I)the set of atoms p su
h that for every rule in the Herbrand instantiation of P with p as its head, the bodyis false in I , i.e., some subgoal of the rule is false in I . Note that NP is the portion of UP produ
ed by
ondition (1) of De�nition 3.1.Fitting also 
onstru
ts 3-valued models with a �xed point operator [9℄. For positive inferen
es, TP isas in De�nition 3.3. For negative inferen
es he uses (in e�e
t) the transformation NP (I) de�ned above. Ase
ond main theorem of that approa
h is: 13
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Theorem 4.1. (Fitting) A 3-valued interpretation I is a 3-valued model of the 
ompleted program if andonly if I = TP (I) [ : �NP (I).This immediately yields a �xed point 
onstru
tion for 3-valued models, and the Fitting model is the least�xed point. We now show that the well-founded partial model is also a 3-valued model in Fitting's sense.Theorem 4.2. Let I1 be as de�ned in De�nition 3.4. Then I1 = TP (I1) [ : �NP (I1). Hen
e, I1 is a3-valued model of the 
ompletion of the logi
 program.Proof. Sin
e I1 = TP (I1) [ : �UP (I1), it follows that1. TP (I1) [ : �NP (I1) � I1, and2. every positive literal in I1 is in TP (I1).It remains to show that every negative literal :p that is in I1 is also in : �NP (I1). But by Lemma 3.5ea
h instantiated rule with head p has its body false in I1, so p 2 NP (I1).Corollary 4.3. The Fitting model is a subset of I1.I1 
an indeed di�er from the smallest 3-valued model of the 
ompletion of the program, and need noteven be a subset of all 2-valued models, as shown by the one-rule program, p p, in whi
h p is false in I1and is unde�ned in the Fitting model.Kunen des
ribes a variant that di�ers from Fitting's in two important ways: (1) the iteration is alwaysstopped at !, and (2) the Herbrand universe is de�ned with respe
t to a language with an in�nite set offun
tion symbols, whi
h properly in
ludes those that o

ur in the program [17℄. The resulting 3-valuedinterpretation is re
ursively enumerable, but may not be a 3-valued model. Kunen's main theorem is thatthis interpretation 
hara
terizes the 3-valued logi
al 
onsequen
es of the 
ompleted program.5. Stable ModelsGelfond introdu
ed an approa
h to negation through stable models [10℄, and motivated it by appealing toautoepistemi
 logi
, as developed by Moore [26℄. The theory has been further developed by Gelfond andLifs
hitz [11℄, and also by Marek and Trusz
zynski [23, 24℄.In this se
tion we follow the de�nition of [11℄, whi
h de�nes stability without referen
e to autoepistemi
logi
. We show that if a program has a total well-founded model, that model is the unique stable model. Wealso dis
uss two programs whi
h do not have total well-founded models but do have unique stable models.Whether inferring (or not inferring) the truth of these extra literals is \a bug or a feature" of either approa
hwe leave for the reader's judgement.Gelfond and Lifs
hitz [11℄ de�ne a stable model to be one that reprodu
es itself in a 
ertain three stagetransformation, whi
h we 
all the stability transformation. If a program has only one stable model, that is
alled its unique stable model. Stable models refer to 2-valued logi
. When speaking of total, or 2-valued,interpretations, it is more 
ommon to represent models as sets of ground atoms, with the understandingthat missing atoms represent the negative literals. In this 
ontext a \minimal model" is one that has aminimal set of positive literals, and a \monotoni
 transformation" on total interpretations is one that ismonotoni
 in terms of the positive literals alone. However, for 
onsisten
y with the rest of the paper, weshall represent models as sets of literals, and use the following notation for sets of positive and negativeatoms in interpretations. 14
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De�nition 5.1. For any partial interpretation I , let Pos(I) be the set of positive literals in I , and letNeg(I) be the set of atoms that represent negative literals in I . Thus I = Pos(I) [ : �Neg(I).De�nition 5.2. Given a general logi
 program P, and its Herbrand instantiation, PH , we de�ne S, thestability transformation from total interpretations into total interpretations. Given a total interpretation I ,its transformation S(I) is de�ned in the following three stages:1. De�ne P0 = T1(PH ; I)where T1 is the following transformation: For ea
h rule instantiation, if it 
ontains a negative subgoalthat is in
onsistent with I , then the rule instantiation is dis
arded. The output of the transformationis the set of rule instantiations that remain.2. De�ne P00 = T2(P0)where T2 is the transformation by whi
h all negative subgoals are dropped from rules of P0, leaving aHorn program. We 
all P00 the redu
tion of P with respe
t to I .3. Sin
e P00 is a Horn program, we 
an form its minimum (2-valued) model as in the standard Van Emdenand Kowalski semanti
s [39℄. In this 
ontext, \minimum," means that the set of positive literals isminimized, and hen
e the set of negative literals is maximized.We de�ne S(I) to be this minimum model of P00.Example 5.1. Let PH be p not p:a not b:b not a:and let M = fa; :b; pg, whi
h is a minimal model of PH . Then P0 
onsists only ofa not b:be
ause the other rules 
ontain negative subgoals whose atoms are in Pos(M). Now P00 is the Horn rulea:Thus S(M) = fa; :b; :pg, whi
h, in
identally, is not a model of PH .The name \stability transformation" is justi�ed in a sense by the following lemma, whi
h shows that S isa \shrinking" transformation (on positive literals) when applied to total models. However, as shown above,it is possible that M is a model and S(M) is not a model; it may \shrink" too mu
h.15
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Lemma 5.1. Let M be a total model of general logi
 program P. Then Pos(S(M)) � Pos(M).Proof. Using the terminology of De�nition 5.2, M is a total model of P0 and also of P00, by their
onstru
tion. But S(M) is the minimum total model of P00.The models that are �xed points of S are of spe
ial interest.De�nition 5.3. A total model M of general logi
 program P is stable if it is a �xed point of S; that is, ifM = S(M). If program P has exa
tly one stable model, that model is 
alled the unique stable model of P.It is immediate that a stable model is minimal (in terms of the set of positive literals), but not everyminimal model is stable, as shown in Example 5.1 above and in Example 5.3 below.Example 5.2. Let P1 be a not b:b not a:Both fa; :bg and fb; :ag are stable models, so P1 has no unique stable model. Its Fitting model, 2PCinterpretation, and well-founded partial model are ;.Example 5.3. For another example, let P2 be p not p:The only model of P2 is M = fpg. The one rule in the program drops out of the redu
tion, makingS(M) = f:pg the minimum model of the redu
tion of P2. Hen
e P2 has no stable model.As dis
ussed in Example 4.2, the 
ompleted program is p$ :p. Its 2PC interpretation in 2-valued logi
is in
onsistent. Its Fitting model and well-founded partial model are ;.There is a 
lose relationship between stable models and well-founded (partial or total) models. As de�ned,a unique stable model is demonstrated only through the expli
it enumeration of all minimal models followedby testing ea
h for stability. We shall show that well-founded total models are unique stable models. Thiso�ers a method to generate the unique stable model dire
tly3 in su
h programs. The next lemmas illustratethe 
lose relationship by showing that, for total models, the negative part of the stability transformation Sagrees with the greatest unfounded set UP , while the positive part of S is 
ontained in TP .Lemma 5.2. Let M be a total model of a program P. Then Neg(S(M)) = UP (M).Proof. Form Horn program P00 as in De�nition 5.2, and let M0 = S(M) be its minimum total model.First we show that UP (M) � Neg(M0). Sin
e M0 is total, it suÆ
es to show that, for any positiveliteral p, if p 2 Pos(M0) then p 62 UP (M). We prove this by indu
tion on the stages of the (Van Emden3if you 
onsider possibly trans�nite iteration dire
t! 16



www.manaraa.com

and Kowalski type) 
onstru
tion of M0. It is true va
uously for stage 0, whi
h is empty. For stage k > 0,suppose positive literal p is derived in stage k of the 
onstru
tion of M0. Then there is a rulep a1; : : : ; akin P00 su
h that the ai's have been derived in stages less than k. This rule 
orresponds to some rule in P0,p a1; : : : ; ak; not b1; : : : ; not bnsu
h that ea
h bj 2 Neg(M), whi
h in turn 
orresponds to a rule in PH . By Lemma 5.1, all the ai's are alsoin Pos(M). Sin
e M is 
onsistent, none of the subgoals, the ai's or the not bj 's, are false in M. Finally,by the indu
tive hypothesis, none of the ai's are in UP (M). Hen
e, by virtue of this PH rule, p 62 UP (M).We prove that Neg(M0) � UP (M). It suÆ
es to show that Neg(M0) is an unfounded set of PH w.r.t.M. Suppose some p 2 Neg(M0) fails to satisfy some 
ondition of unfoundedness, as de�ned in De�nition 3.1.Then there is a rule p a1; : : : ; ak; not b1; : : : ; not bnin PH su
h that the following fa
ts hold:1. no ai is false in M2. no bj is true in M3. no ai is true in Neg(M0)the third fa
t being the negation of the \unfoundedness" 
ondition. Sin
e M is total, it follows from these
ond fa
t that ea
h bj is in Neg(M). Hen
ep a1; : : : ; akis a rule in P00. Sin
eM0 is total, it follows from the third fa
t that ea
h ai 2 Pos(M0). Hen
e p 2 Pos(M0),a 
ontradi
tion.Lemma 5.3. Let M be a total model of P. Then Pos(S(M)) � TP (M).Proof. Form program P0 and Horn program P00 as in De�nition 5.2, and let M0 = S(M) be the minimumtotal model of P00. By Lemma 5.1, Pos(M0) � Pos(M), so we havePos(M0) = Pos(TP 00 (M0)) � Pos(TP 00(M))by monotoni
ity of TP 00 (on positive literals). Finally,Pos(TP 00 (M)) = Pos(TP 0(M)) = Pos(TP (M))by 
onstru
tion.The pre
eding lemmas lead to the next theorem that being a �xed point of S is equivalent to being a�xed point of WP for total models. In fa
t, this equivalen
e extends to all total interpretations be
ausebeing a �xed point of either transformation ensures that the interpretation is a model. As shown in a laterexample, it is possible that a �xed point of S is not the least �xed point of WP , but if it is the least �xedpoint, that stable model is obviously unique. 17
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Theorem 5.4. Let M be a total model of P. Then M is stable if and only if it is a �xed point of WP .Proof. Form Horn program P00 as in De�nition 5.2, and let M0 = S(M) be its minimum total model.(() We suppose M is a �xed point of WP and prove it is stable. Sin
e M is a �xed point of WP , wehave Neg(M) = UP (M). But, by Lemma 5.2, Neg(M0) = UP (M), also. Hen
e M =M0.()) We suppose M is stable and prove it is a �xed point of WP . Sin
e M = M0, by Lemma 5.3,Pos(M) = Pos(M0) � TP (M). But TP (M) � Pos(M), sin
eM is a model of P. So TP (M) = Pos(M).Again, sin
e M =M0, by Lemma 5.2, UP (M) = Neg(M).Corollary 5.5. Let I be a total interpretation of P. Then I is a �xed point of S if and only if it is a �xedpoint of WP .Proof. It is routine to show that if I is a �xed point of either S or WP , then every instantiated rule issatis�ed. Hen
e I is a model, and Theorem 5.4 applies.Corollary 5.6. If P has a well-founded total model, then that model is the unique stable model.Corollary 5.7. The well-founded partial model of P is a subset of every stable model of P.Proof. Every stable model is a �xed point of WP , and the well-founded partial model is the least �xedpoint.In Examples 5.4 and 5.5 below we show that the 
onverse of Corollary 5.6 is not ne
essarily true.We agree with Gelfond and Lifs
hitz that a model that is intended to be asso
iated with a programshould be able to \derive itself." However, as shown in later examples, the sense of \deriving itself" di�ersslightly between well-founded semanti
s and stable model semanti
s.5.1. Comparison of Stable and Well-Founded Approa
hesWe now 
ompare the well-founded semanti
s with the stable model semanti
s. On many programs they areidenti
al, and at �rst it appeared that the only di�eren
e was that the well-founded semanti
s de�ned a partialmodel when there were multiple stable models. However, it turns out that there also are programs with aunique stable model and only a partial well-founded model. In other words, the 
onverse of Corollary 5.6 isnot ne
essarily true. These examples and others show that awkward situations arise for well-founded modelsand unique stable models when the fa
toring operation of resolution theorem proving (or the law of theex
luded middle, in natural dedu
tion) plays a part. Re
all that \fa
toring" of a ground 
lause is simply theoperation of merging two identi
al literals.Fa
toring enters the pi
ture with a rule of the formp not p; : : :be
ause, as a disjun
tive 
lause, it 
an be rewritten asp _ p : : :and then the two p literals 
an be merged. Another manifestation of this phenomenon o

urs with a pair ofrules, p a; : : :p not a; : : :18
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Again, as disjun
tive 
lauses, they 
an be resolved on a, givingp _ p : : :and then the two p literals 
an be 
ombined by fa
toring. Two-valued logi
al 
onsequen
es that 
an bederived only by using fa
toring 
annot be derived in either the well-founded semanti
s or the 3-valuedprogram 
ompletion approa
hes (
f. Examples 4.2 and 5.3).Example 5.4. Consider the program P3 given by the four rules:a not b:b not a:p not p:p not b:Let us �rst 
onsider P03, 
onsisting of just the �rst three rules above (
f. Example 5.1). The �rst two rules
omprise P1 of Example 5.2, whi
h had two stable models; the third is P2 of Example 5.3, whi
h had nostable model. Thus the �rst three rules alone have two minimal models, neither of whi
h is stable:fa; :b; pg and f:a; b; pgThe program 
ompletion of P03 is in
onsistent. (Just turn ea
h \ " into \$".) Not too surprisingly, thewell-founded partial model and the Fitting model are empty.Adding the fourth rule would appear to be meaningless at �rst glan
e be
ause p is already a (2-valued) logi
al 
onsequen
e of the �rst three rules, and there is no apparent basis to 
on
lude :b, anyway.Nevertheless, the fourth rule has a strange e�e
t: it stabilizes pre
isely one of the two models, and soprodu
es a unique stable model for the full program! Moreover, the program 
ompletion of the full P3,a$ :b:p$ (:p _ :b):now has a 2-valued model. Whereas its well-founded partial model and Fitting model remain empty, theunique stable model of P3 is M = fa; :b; pgTo verify this, we note that the redu
tion of P3 with respe
t to M isa:p:This model is also the 2PC model.Example 5.5. Consider the program P4 given by the four rules:a not b:b not a:
 a; b:a not 
:19
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Again the Fitting model and well-founded partial model are ;, while the unique stable model exists andagrees with the 2PC model: M = fa; :b; :
gTo verify this, we note that the redu
tion of P4 with respe
t to M is simplya:
 a; b:a:
6. Strati�ed and Lo
ally Strati�ed ProgramsA program is strati�ed if all of its predi
ates 
an be assigned a rank su
h that� no predi
ate depends positively on one of greater rank, and� no predi
ate depends negatively on one of equal or greater rankin any rule [5, 1, 19, 40℄. In the 
ontext of an IDB and EDB, the EDB, being a set of simple fa
ts, hasrank 0. IDB predi
ates whose de�ning rules involve no negation also have rank 0. IDB predi
ates whoseonly negative dependen
ies are on rank 0 predi
ates have rank 1, and so on. Strati�ability is easy to 
he
ksynta
ti
ally; in fa
t it 
an be 
he
ked by examination of the IDB alone.The strati�ed semanti
s of su
h a program is de�ned by �rst drawing all rank 0 inferen
es in the normalway for Horn programs, and 
on
luding :p for all rank 0 atoms p that have not been inferred. Note thatthis is not the usual \negation by failure" be
ause some of these atoms may not have failed �nitely ; 
f.Example 7.2. The de�nition of strati�ed semanti
s is 
ompleted indu
tively: After all atoms of ranks lessthan k have been 
lassi�ed as positive or negative, use these literals to derive positive rank k atoms; 
on
lude:q for all rank k atoms q that have not been inferred. The result is 
alled the strati�ed model .It is immediate from Theorem 3.7 that the strati�ed semanti
s agrees with the well-founded semanti
sfor rank 0, and it is easy to see that the agreement extends to all ranks. We shall prove a somewhat strongerresult below. From another point of view, Van Gelder has shown that strati�ed programs that satisfy 
ertainother 
onditions have a model based on \tight derivations" that 
oin
ides with the strati�ed model [40℄.Przymusinski 
arried the above idea to a �ner grain by de�ning a program to be lo
ally strati�ed if ea
hatom in its Herbrand base 
an be assigned a 
ountable ordinal rank su
h that no atom depends on an atomof greater rank or depends negatively on one of equal or greater rank in any instantiated rule [31℄. Note thatthe program is strati�ed if all atoms with the same predi
ate symbol 
an be assigned the same rank. Theextension handles situations where the \re
ursive negation" is apparent, but not real. A typi
al example isthe program even(s(X)) not even(X):even(0):where ea
h ground atom 
an be given a rank equal to the power of s in its argument.To give a semanti
s to lo
ally strati�ed programs Przymusinski [31℄ has given a de�nition for perfe
tmodel . Essentially,M is a perfe
t model (for a given ranking of atoms) if for all other modelsM0, if positive20
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literal p is the atom of least rank that is in one model, but not the other, then it is in M0. In other wordsthe perfe
t model minimizes positive literals of low rank in preferen
e to positive literals of greater rank.Przymusinski has shown that all lo
ally strati�ed programs have a perfe
t model, and that it isindependent of the ranking system 
hosen (within the 
onstraints mentioned); moreover, on strati�edprograms, the perfe
t model agrees with the strati�ed model. We show that the well-founded semanti
sis an extension of this approa
h in the following sense.Theorem 6.1. If P is lo
ally strati�ed, then it has a well-founded model, whi
h is identi
al to the perfe
tmodel.Proof. We take as the indu
tive hypothesis that for any atom p of rank k: if p is in the perfe
t model, it isin the well-founded partial model I1; and if p is not in the perfe
t model, then :p is in I1.The basis, k = 0, is immediate.For k > 0, �rst assume p is in the perfe
t model. Then we 
laim that there is an instantiated rule withp as head, say p q1; q2; : : : ; not r1; not r2; : : :su
h that all qi are in the perfe
t model and no rj is in the perfe
t model. For if this were not so, we
ould remove p from the (supposedly) perfe
t model, and at worst have to add atoms of greater rank thanp (be
ause they have a rule 
ontaining not p) to restore the model. Sin
e the rj are of lower rank than p,the indu
tive hypothesis asserts that :rj are in I1. Also, any qi of lower rank than p are in I1.Now 
onsider a program 
onsisting of all instantiated rules for atoms of rank k whose subgoals of lowerrank are true in I1. We modify the rules by removing the subgoals of rank less than k, leaving a Hornprogram P00 (
f. De�nition 5.3). Clearly the minimum model of P00 will be pre
isely the atoms of rank k inthe perfe
t model. But all su
h atoms are also in I1. Moreover, the atoms of rank k not in the minimummodel of P00 form an unfounded set of P00 with respe
t to ; by Theorem 3.7. It follows from the 
onstru
tionof P00 that these atoms also form an unfounded set of P with respe
t to I1, so their negations are in I1.7. Motivating ExamplesWhether a parti
ular model is the \right" one really depends on people's expe
tations. After all, programsare tools whose behavior needs to be understood and manageable by people. In this se
tion we 
omparewell-founded semanti
s with some other re
ent approa
hes based on 
anoni
al models, the stable modelsemanti
s outlined in Se
tion 5, and strati�ed semanti
s, whi
h has been studied by many resear
hers. Wepresent some examples to support our position that well-founded models are natural and intuitive.Example 7.1. This example is abstra
ted from the \Yale shootout" example due to Hanks and M
Dermott[13℄. The program P is noise(T ) loaded (T ); shoots(T ):loaded (0).loaded (T ) su

(S; T ); loaded (S); not shoots(S):shoots(T ) triggers(T ):triggers(1).su

(0; 1). 21
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We regard triggers and su

 as EDB predi
ates, and the others as IDB. The Herbrand instantiation of P
ontains ground versions of the IDB rules as follows:noise(1) loaded (1); shoots(1):noise(0) loaded (0); shoots(0):loaded (1) su

(0; 1); loaded (0); not shoots(0):loaded (1) su

(1; 1); loaded (1); not shoots(1):loaded (0) su

(0; 0); loaded (0); not shoots(0):loaded (0) su

(1; 0); loaded (1); not shoots(1):shoots(1) triggers(1):shoots(0) triggers(0):Intuitively, sin
e we have no information that shoots(0) holds, we are led to the (presumably) intendedminimal model: loaded (0);:shoots(0);:noise(0);loaded (1); shoots(1); noise(1)However, an alternate minimal model exists:loaded (0); shoots(0); noise(0);:loaded (1); shoots(1);:noise(1)Sin
e noise(1) is not true in all minimal models, the 
ir
ums
ription approa
h does not allow it to be
on
luded, whi
h was a main point made in [13℄. However, the well-founded model is the intended one.To 
ompare with other approa
hes: The 2PC model and Fitting model are also the intended model here.The program is strati�ed, so the strati�ed semanti
s agrees with the well-founded semanti
s. The intendedmodel is also the unique stable model, as the alternate is not stable.In the pre
eding example, the 2PC and Fitting models were 2-valued, and gave the intended model. Thenext example typi�es the situation in whi
h we 
onsider the 2PC and Fitting models to be too weak anapproa
h.Example 7.2. Consider a program with the rules:p(X;Y ) b(X;Y ):p(X;Y ) b(X;U); p(U; Y ):e(X;Y ) g(X;Y ):e(X;Y ) g(X;U); e(U; Y ):a(X;Y ) e(X;Y ); not p(X;Y ):and the fa
ts about b and g: b(1; 2) g(2; 3)b(2; 1) g(3; 2)22
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Apparently, p is the transitive 
losure of b and e is the transitive 
losure of g. We expe
t a to be the di�eren
eof these two relations; in parti
ular, it seems that a(2; 3) is true. This appears to be the intended model,and is indeed the well-founded model, as well as the strati�ed model.There is another minimal model, in whi
h p(2; 3) and p(1; 3) are true and a(2; 3) is false. Moreover,this alternate model satis�es the Clark 
ompletion of the program as well. Thus by the method of logi
al
onsequen
es of the 
ompletion of the program, the status of a(2; 3) and other literals is either not addressed(2PC interpretation) or de
lared unde�ned (Fitting model, Kunen model).The 
riterion of stability reinfor
es the 
hoi
e of the well-founded model. The alternate model is in
apableof reprodu
ing itself in the manner de�ned in De�nition 5.3, and the intended model emerges as the uniquestable model.In fa
t, Kunen has re
ently shown that in his 3-valued logi
al 
onsequen
e semanti
s, a \stri
t" logi
program without fun
tion symbols 
annot de�ne a predi
ate that is true in the transitive 
losure, false inits 
omplement, and nowhere unde�ned [18℄. Informally, a \stri
t" program is one in whi
h the dependen
eof one predi
ate on another (or itself) is either through an even number of negations or through an oddnumber, but not both. Be
ause Kunen's semanti
s is di�erent from Fitting's, even on programs withoutfun
tion symbols (see Example A.1 in the appendix), the question of whether a \stri
t" program is possiblein the Fitting semanti
s is open. Nonstri
t programs in the Fitting semanti
s are known to exist, by thework of Immermann [14℄, but are quite 
ompli
ated; details are dis
ussed elsewhere by Van Gelder [42℄.As another motivational example, we 
onsider a program that is not lo
ally strati�ed, as de�ned inSe
tion 6, yet has a well-founded model when the EDB relation is a
y
li
. A more involved example inwhi
h 
onstraints on the EDB 
an be spe
i�ed to guarantee that the well-founded model is total is dis
ussedelsewhere [41℄.Example 7.3. This example is essentially the same as one dis
ussed by Gelfond and Lifs
hitz [11℄, and isone of the examples that led to the formulation of well-founded semanti
s, as well as stable models. Interestly,this program turns out to be 
losely related to a game des
ribed by Kolaitis, and used to prove that thereare queries in �xpoint logi
 that are not expressible by strati�ed programs [16℄. In this respe
t, the program
an be viewed as des
ribing a game where one wins if the opponent has no moves, as in 
he
kers (draughts).winning(X) move(X;Y );not winning(Y ):Some sample move graphs are shown in Fig. 1. Whenever the move EDB relation is a
y
li
 (e.g., part (a)of the �gure), the well-founded total model is easily found, by pro
eeding \up" the dire
ted graph. Part(b) shows a 
y
li
 
ase in whi
h the well-founded model is partial, but even when a 
y
le is present in theEDB, there may be a well-founded total model (part (
)). For this program, the Fitting model and the 2PCinterpretation agree with the well-founded model.However, the program is not lo
ally strati�ed be
ause the Herbrand instantiation 
ontains a rule in whi
hwinning depends negatively upon itself, as inwinning(a) move(a; a);not winning(a):23
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����F ZZZZZZZ~�������= ����T �����R�����	����T�����	 �����R����F ����F ����F ����T SSSSSw�����/ ����F����F(a)

����? ���� �-
����??����T?����F(b)

����F ���� �-
����T?����F(
)Figure 1: Graphs for Example 7.3: (a) A
y
li
; (b) Cy
li
 with partial model; (
) Cy
li
 with total model.Entries T , F , and ? in the nodes indi
ate whether winning is true, false, or unde�ned in the well-founded(partial) model.This also destroys the perfe
t model even though move(a; a) does not o

ur in the EDB.4 Re
ently,Przymusinska and Przmusinski have de�ned weakly perfe
t models to handle programs su
h as this example[30℄.The next example was inspired by an informal presentation by K. Morris of Stanford University [27℄. Itshows how the negation issues addressed by this paper might easily arise in pra
ti
al settings.Example 7.4. We imagine a logi
 program that might be part of a VLSI CAD system, whose fun
tion is todisplay a VLSI 
hip that has been hierar
hi
ally de�ned. Ea
h obje
t is modeled as a series of layers, ea
hlayer being an array of grid points. The hierar
hi
al de�nition spe
i�es basi
 and synthesized obje
ts: basi
obje
ts are distinguished by having base 
olors , while the 
olors of synthesized obje
ts are de�ned wholly interms of their 
omponents, and 
an vary from point to point. The entire 
hip is the \root" obje
t. Figure 2shows an example in whi
h root obje
t a is synthesized from obje
ts b, 
, d and e, whose further details arenot shown.Assume the program uses these predi
ates, whi
h may be treated as EDB relations for our purposes.� ve
Sum(P0; P1;Pt) is true when P0 + P1 = Pt as two-dimensional ve
tors, the details of whoserepresentation do not 
on
ern us.4Ex
ept in the trivial 
ase where the program has only one Herbrand model.24
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a
b

e
dd ss
Figure 2: VLSI obje
ts for Example 7.4: Obje
t a is synthesized from b and 
 at level 1, and d and e at level2. The 
olor of obje
t a is \inherited" from 
 at the point represented by the lower dot; however this doesnot hold at the upper dot, be
ause 
 is dominated by d there.� 
omponent(Obj ; O1; P0; L) is true when obje
t Obj has a 
omponent O1 whose origin, or referen
epoint, is P0, and whose layer number is L. For example, the 
hip might have many identi
al ALUsat di�erent points; they would all be the same O1, but would have various values of P0. The ALUsmight have adders as 
omponents, and the adders would have still smaller 
omponents. Within thesame Obj 
omponents might overlap, so the layer number spe
i�es their relative \verti
al" order.� baseColor (Obj ;Pt ; C) means that C is the 
olor of basi
 obje
t Obj at point Pt .To spe
ify the 
olor property in our rule syntax, we require two mutually re
ursive IDB relations. Theinterested reader 
an work out the equivalent rules using a single relation in a language that supports ari
her syntax for rule bodies [21, 28℄.� 
olor (Obj ;Pt ; C) means that the visible 
olor of Obj at Pt is C (looking down from above).� dominated(Obj ;Pt ; O1; L1) holds when two obje
ts that are 
omponents of the same Obj overlap atpoint Pt and the obje
t O1 is in the lower layer L1. For the obje
t in the higher layer to a
tuallyoverlap, it must have 
olor de�ned at that point.

25
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We now formulate rules for determining the 
olor C of a 
omponent Obj at a grid point Pt .
olor (Obj ;Pt ; C) baseColor (Obj ;Pt ; C):
olor (Obj ;Pt ; C) 
omponent(Obj ; O1; P0; L1);ve
Sum(P0; P1;Pt);
olor (O1; P1; C);not dominated (Obj ;Pt ; O1; L1):dominated (Obj ;Pt ; O1; L1) 
omponent(Obj ; O2; P0; L2);L1 � L2;ve
Sum(P0; P2;Pt);
olor (O2; P2; C2):Note that 
olor depends on itself negatively through the rule for dominated, as well as positively. The ruledesigner expe
ts the 
omponent relation to be a
y
li
 in its �rst and se
ond arguments; i.e., O1 is expe
tedto be a sub
omponent of Obj .When the expe
ted a
y
li
ity holds, the well-founded model is easily found, just working up the datastru
ture. In this 
ase, the Fitting model is 2-valued, as is the 2PC model. However, there is no perfe
tmodel for essentially the same reason as in Example 7.3.When a 
y
le is present in the EDB, 
olor 
annot be established for anything in the 
y
le. For thisappli
ation, the 
y
le presumably represents a design error. However, the well-founded semanti
s still de�nes
olor 
orre
tly in parts of the 
hip not a�e
ted by the error.A theme that runs through these examples is that well-founded semanti
s frequently agrees with othersemanti
s, but seems to avoid their awkward 
ases. In this sense it seems quite robust.8. Computational ComplexityNot only do we want to formulate a reasonable semanti
s for negation, we also want the set of statementsderivable to be \reasonably 
omputable," as far as possible. Unfortunately, the well-founded partial modelis not ne
essarily re
ursively enumerable, a diÆ
ulty it shares with most of the semanti
s dis
ussed here.However, for fun
tion-free logi
 programs (a 
lass that has 
ome to be known as Datalog), the Herbranduniverse is �nite and the 
onstru
tion is e�e
tive. In this se
tion we show that the data 
omplexity of thewell-founded semanti
s, as de�ned by Vardi [44℄, is polynomial. From this standpoint it is 
ompetitive withother methods, su
h as strati�ed semanti
s, whose data 
omplexity has been studied elsewhere [4, 44, 12,14℄, and the Fitting model (as remarked below).In this dis
ussion of 
omplexity we restri
t attention to fun
tion-free programs, so a program's Herbranduniverse is just the set of 
onstants appearing in it. We 
onsider a �xed IDB, PI (whi
h we allow to be anygeneral fun
tion-free logi
 program). As dis
ussed before, PI 
an be thought of as a set of inferen
e rulesthat might be applied to various EDB's, or sets of fa
ts. The predi
ates that appear as subgoals in PI , butdo not appear in the head of any rule, 
onstitute the EDB predi
ates. We represent an EDB, PE , as a setof positive ground literals ranging over the EDB predi
ates. (The 
onstants in PE may or may not appear26
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in PI .) Given an EDB PE , we form a logi
 program P(PE) = PI [ PE , and we denote its well-foundedpartial model by I1(PE). Finally, regard PI as de�ning the transformation from PE to I1(PE).De�nition 8.1. The data 
omplexity of an IDB is de�ned as the 
omputational 
omplexity of de
idingthe answer to a ground atomi
 query as a fun
tion of the size of the EDB; in the 
ontext of well-foundedsemanti
s, this means de
iding whether the ground atom is positive in the well-founded partial model.Sin
e the IDB is �xed, the predi
ates in the well-founded model have �xed number and arity (width,or number of argument pla
es). Hen
e the Herbrand base has size that is polynomial in the size of theEDB. (Without fun
tion symbols, we may add any 
onstants appearing only in the query to the Herbranduniverse without having a signi�
ant e�e
t on its size.) Also sin
e the IDB is �xed, the size of the Herbrandinstantiation of the program is polynomial in the size of the EDB.Theorem 8.1. The data 
omplexity of the well-founded semanti
s for fun
tion-free programs is polynomialtime.Proof. As usual in the proofs of su
h theorems, we shall show that the entire well-founded (partial) model
an be 
onstru
ted in polynomial time, after whi
h any query 
an be answered immediately. The well-founded model is the least �xed point of the 
onstru
tion of I�, as des
ribed in De�nition 3.4. At ea
h stageof the indu
tion, until the �xed point is rea
hed, at least one element of the Herbrand base H is added toI�+1, so the �xed point must be rea
hed in a number of steps polynomial in the size of the EDB. This sortof argument is standard; see [4, 44, 12, 14℄, et
. Similar standard arguments show that 
al
ulating TP 
anbe done in polynomial time. So we need only show that ea
h UP (I�) 
an be found in polynomial time.Clearly, we may restri
t attention to �nite �. We shall a
tually give a polynomial time 
onstru
tion of theset of ground atoms in (H �UP (I�)).De�ne �(J) as the transformation on sets of ground atoms, with impli
it parameter I�, su
h that: Aground atom p is in �(J) if and only if there is a ground instan
e of a rule in P, sayp b1; : : : ; bn; not 
1; : : : ; not 
msu
h that� no subgoal (bi or not 
j) is false in I�, and� all bi are in J .Let J
 = �
(;). Clearly � is monotoni
, and J
 rea
hes a limit J1 at a 
 that is polynomial in jH j.Suppose p 2 �(J
) due to the rule shown above. This rule shows that if p were in UP (I�), then some bimust also be in that set. Thus by a trivial indu
tion on 
, no atom in [
 J
 is in UP (I�).To show that the set of ground atoms in H � J1 is unfounded w.r.t. I�, let q be any su
h atom. Thenea
h rule with q as head has a subgoal that violates the 
ondition that would put q in �(J
), for any 
. If theviolation is that some subgoal is false in I�, this satis�es 
ondition (1) for an unfounded set (De�nition 3.1);if the violation is that some positive subgoal is not in J
 for any 
, then that subgoal is in H�J1, satisfying
ondition (2) for an unfounded set.It follows that J1 = (H �UP (I�)). 27
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The key idea in the above proof, to indu
tively 
onstru
t the 
omplement of the greatest unfounded set,was �rst suggested to two of the authors by M. Y. Vardi, and later dis
overed independently by J. S. S
hlipf.We remark that the Fitting model also has polynomial data 
omplexity (for fun
tion-free programs). Theproof is identi
al to that of Theorem 8.1 above, ex
ept that a polynomial 
al
ulation of NP (see Def. 4.2)must be exhibited; but su
h a 
al
ulation is routine.In 
ontrast, Marek and Trusz
zynski [24℄ have shown that, even for propositional general logi
 programsP, determining whether P has a stable model at all is NP-
omplete.9. The Final Frontier?The major short
oming of the well-founded semanti
s that we have found 
on
erns its inability to handle
on
lusions that 
an be rea
hed only by using fa
toring or a similar te
hnique, su
h as \an
estor resolution."Su
h te
hniques are known to be ne
essary for 
ompleteness of non-Horn proof systems, but not for sets ofHorn 
lauses. The need for fa
toring arises prin
ipally from \proof by 
ases", and sometimes from \proofby 
ontradi
tion".However, fa
toring possibilities in the given program do not always 
arry over to the 
ompleted program,and a _ :a does not simplify to true in either 3-valued logi
 [9, 17℄ or intuitionisti
 logi
 [7℄. Thus 
autionis needed to keep a 
oherent system.The overly trivial P2 in Example 5.3 might lead one to believe that a fa
toring 
apability 
an be easily\pat
hed in" by just 
he
king for a negative subgoal that 
omplements the head of the rule; this 
on
lusionwould be in
orre
t, as shown by a not b:b not a:p a:p b:in whi
h we 
annot 
hoose between a and b, but might reasonably be expe
ted to noti
e that p musthold (in 2-valued logi
). In general, re
ognizing that p is a (2-valued) logi
al 
onsequen
e of a �nite setof instantiated rules is 
o-NP-
omplete. Furthermore, we normally start with rules that 
ontain variables.Thus, any extension of logi
 program semanti
s that depends on \true non-Horn reasoning" needs to beundertaken with great 
aution, and represents a signi�
ant open problem.10. Con
lusionWe have presented a new semanti
s, the well-founded semanti
s , for general logi
 programs that extendsseveral earlier proposals, and has advantages over them in that1. It is appli
able to all programs.2. Compared to several other methods, a larger portion of the Herbrand base tends to be 
lassi�ed aseither true or false.3. Truth values are assigned (in the authors' judgement) in a reasonably predi
table and intuitivelysatisfying way.Elsewhere, the expressive power of the well-founded semanti
s has been 
ompared to several forms of �xpointlogi
 [42℄. A 
orresponding pro
edural semanti
s has been reported for some 
lasses of programs [34, 32℄.28
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ontaining what is 
alled unsafe negation. A simple way to remove this behavior is to augment the program,as des
ribed in this appendix. We pro
eed informally here, and refer to [22℄ for a formal dis
ussion.De�nition A.1. Any general logi
 program P has an asso
iated augmented program that is formed byadding the apparently nonsensi
al rule: $p($f($
)) $p($f($
)):where $p, $f , and $
 are symbols that do not o

ur elsewhere in the program.Having the extra \$" terms in the augmented Herbrand universe adds in�nitely many elements to theHerbrand universe, elements that have no names in the original program. This ensures that goals with freevariables have \room to fail" when they should, even in their instantiated versions. Augmenting a
hieves ane�e
t similar to Kunen's embedding the program in a language with in�nitely many fun
tion and 
onstantsymbols.Example A.1. In the following program, without inspe
ting the a relation, we would expe
t p to holdwherever a does. (Read d as \di�ers" and s as \same".)p(X) a(X); d(X;Y ):d(X;Y ) not s(X;Y ):s(U;U):a(1):The underlying idea is that, looking at the rule for s, we expe
t the formula 8Y s(X;Y ) to be false. But inthe unaugmented Herbrand universe of one element there is no \room" for s(1; Y ) to fail be
ause 1 is theonly term. As a result, p(1) fails. However, adding the apparently unrelated fa
t b(2) to the program meansthat s(1; Y ) 
an fail, by setting Y = 2. This in turn provides a true instan
e d(1; 2), allowing a proof ofp(1). Augmenting the program avoids this bizarre behavior; s(1; $
) fails in all 
ases, making p(1) alwaysprovable, as intuition expe
ts.To see why this program has unsafe negation, 
onsider a top-down sequen
e of goal redu
tions beginningwith p(1). Using the rules, p(1) redu
es to (a(1); d(1; Y )), a(1) redu
es to true, then d(1; Y ) redu
es to29
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not s(1; Y ). The o

urren
e of a free variable Y in the negative subgoal is 
alled \unsafe" be
ause it is notlimited to any domain. This derivation is said to have 
oundered [20℄.Finally, let us note that in the unaugmented program p(1) is false in the well-founded semanti
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